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INTRODUCTION
In high-performance sports, excessive levels of fatigue can inhibit 
the desired adaption to training, increase injury risk, and potentially 
hinder athletic performance [1]. Therefore, continuously exploring 
new ways to quantify player readiness is considered a priority with-
in elite sporting organizations [1, 2]. In light of this pursuit, numer-
ous fatigue monitoring tools have emerged [1, 2]. However, from 
a practical perspective, traditional fatigue monitoring tools often 
remain exhaustive (e.g., maximal-effort physical testing) [2, 3], sub-
jective (e.g., self-reported questionnaires) [2, 4], invasive (e.g., blood 
sampling) [2, 5], expensive (e.g., electroencephalogram) [2, 6], or 
relatively slow to conduct (e.g., 5-min recordings of heart rate indi-
ces in standing and lying postures) [7]. Hence, there’s an ongoing 
need for innovative solutions that enable real-time, multi-modal, 
non-invasive, cost-effective, valid, and reliable insights into player 
fatigue, and in turn, improve the day-to-day decision-making pro-
cesses of coaches and support staff personnel [1, 2].
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Some of the most promising innovations to date in this space have 
emerged from collaborative initiatives between engineers, developers, 
scientists, and practitioners who operate in high-pressure environ-
ments (i.e., transatlantic flights, space shuttle missions, military com-
bat, medical surgery, long-haul truck driving, etc.) as a lack of oper-
ational readiness in these positions could lead to lethal 
consequences [8, 9, 10]. Consequently, pupillometry has gained a rap-
id surge in interest by the research community across high-stake in-
dustries [9, 10]. Pupillometry can be defined as the study of the the 
central opening of the iris through which light passes before reaching 
the lens and being focused onto the retina [11]. Because the pupils 
are directly innervated by the second cranial nerve (CN II) and third 
cranial nerve (CN III) [11], measuring pupil reflexes provides an ob-
jective representation of the autonomic nervous system (ANS) [12–15] 
as well as cognitive, emotional, physical, and physiological status in 
real time [16, 17, 18]. Since the first discovery of pupillometry as 
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four home games over a 5-week investigation period (1 week apart, 
all games commenced between 8:00 – 8:30 PM). For each game, 
a pupil testing sequence was executed at the following timepoints: 
24-h pre-game (GD-1), 24-h post-game (GD+1), and 48-h post-
game (GD+2). All pupil tests were completed and performed inside 
a standard clinical testing room during regular pre-practice physio-
therapy session hours (6:00 PM – 7:30 PM) to emulate a standard-
ized clinical testing time and environment.

Participants
Nine female Belgian professional basketball players (n = 9) com-
peted in the 2020–2021 Euro Cup Women’s Basketball Tournament 
and voluntarily participated in this study. All participants were aged 
18 years or older (range: 18–33 years; mean age: 21.20 ± 4.92 years), 
with a  mean height of 181 ± 5.36 (cm) and body mass of 
80.61 ± 10.73 (kg). Based on positional groupings: 45% were 
grouped as Posts, 33% as Guards, and 22% as Wings. Based on 
the role: 55% were starters and 45% non-starters.

Players were not eligible to participate when they encountered at 
least one of the following criteria: < 18 years of age; unable to par-
ticipate in individual and/or team practices due to injury or illness at 
any point of the investigation period; unable to sit for testing; histo-
ry in genetic syndromes, neurologic pathologies (including intracra-
nial masses) or intraocular pathologies that would affect pupillary 
function (e.g. uveitis, cataracts, diabetes, glaucoma, optic nerve dys-
function); ingestion of alcoholic and/or caffeinated foods, drinks, or 
substances within < 12 h of any pupil examinations; use of ergo-
genic aids and/or medical support that may have altered the neuro-
physiological state of the athlete at any point of the investigation pe-
riod. Prior to the investigation, this study was approved by the 
Institutional Review Board of UCAM University, Murcia, Spain (code: 
CE122002) and conformed to the requirements of the European 
Union General Data Protection Regulation and United States Health 
Insurance Portability and Privacy Act with adherence to the tenets 
of the Declaration of Helsinki with Fortaleza actualization 2013 [34]. 
All test procedures strictly adhered to the World Health Organization 
(WHO), European Commission, and local government safety guide-
lines regarding scientific research during the COVID-19 pandemic.

Testing procedure
To verify whether any pupillometrics could detect a significant change 
in game-induced fatigue and recovery, participants were instructed 
to go through a comprehensive fatigue test battery at each allocated 
timepoint (i.e., baseline, GD-1, GD+1, GD+2). The fatigue test 
battery consisted of the pupil test in combination with four other 
fatigue tests: cognitive fatigue test (i.e., visuomotor reaction 
time) [35, 36], lower-extremity muscle fatigue test (standing pos-
tural sway) [37, 38], perceptual fatigue test (self-perceived exer-
tion) [38], and ANS fatigue test (heart rate variability indices) [40–44]. 
More specifically, upon arrival to the clinical testing room, the play-
er was instructed to wear the Polar H10 heart rate chest strap (Polar 

a human fatigue detection tool in 1936 [19], the field has rapidly ad-
vanced in recent years due to the emergence of Handheld Quantita-
tive Infrared Pupillometers (HQIPs) [19, 20, 21, 22]. In particular, 
HQIPs are now able to repeatedly measure the pupil diameter (1 mea-
surement every 30  ms) with a  minimum detectable change 
of < 0.03 mm (i.e., practical error of 0.88% in relation to the aver-
age pupil diameter) [22, 23]. Consequently, a vast range of Intensive 
Care Units (ICUs) settings [24] and high-stake occupations are pro-
gressively integrating HQIPs as a  first-point-of-care instru- 
ment [25, 26, 27].

Surprisingly, the use of modern HQIPs in professional sports re-
mains bounded by a few use cases (e.g., concussion-related diag-
nostics [28, 29, 30] and “quiet eye” analytics [31]). While some re-
searchers have introduced HQIPs as a method to evaluate ANS 
function in athletes [12, 14, 15], the validity and reproducibility of 
their methods and findings remains unclear. For instance, the inves-
tigations typically followed a cross-sectional study design, adopted 
non-standardized and non-validated pupil testing procedures, exe-
cuted in laboratory conditions, and involved only amateur and sub-
elite athletes. Besides the application of HQIPs to monitor ANS func-
tion, researchers have also demonstrated its effectiveness to monitor 
cognitive effort (i.e., pupil dilation can be viewed as an indirect in-
dex of effort in cognitive control tasks across the domains of updat-
ing, switching and inhibition) [32]. This could imply an important 
discovery as player performance and fatigue originates from the com-
plex state of both physiological and psychological processes [33]. 
Hence, HQIPs may potentially reveal itself as a multi-model at mon-
itoring instrument.

Acknowledging the inherent potential of HQIPs, and appreciating 
the efforts made by previous researchers on this research line, this 
pilot study aims to explore the potential usefulness of a medically 
graded HQIP to monitor game-induced fatigue in nine professional 
female basketball players by determining (1) the test-retest repeat-
ability, (2) the relationship between pupillometrics and other bio-
markers of game-induced fatigue, and (3) the time-course of pupil-
lometrics from baseline and 24 h before games up to 24 h and 
48 h following games. In turn, the reported baseline findings and 
methodological framework may serve as a valuable reference for fu-
ture research initiatives on this topic.

MATERIALS AND METHODS 
Experimental approach to the problem
This pilot study followed a prospective observational study design 
and was conducted in non-experimental conditions, so the coaching 
staff, support staff personnel, and participants did not receive any 
input from the research team. Training data, competitive schedule 
and fixture outcomes were supplied by the coaching staff of the team. 
Two weeks prior to the investigation period, a baseline pupil test was 
performed after two consecutive off days (i.e., no scheduled or or-
ganized practices or workouts during these days) to optimize physi-
cal and psychological recovery. Subsequently, the participants played 
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Electro Oy, Kempele, Finland) and complete a 5-min heart rate vari-
ability (HRV) test in rested condition and seated posture using the 
EliteHRV software (Asheville, NC, United States) [44] on an iPhone 
SE (Apple Inc., Los Altos, California, United States). The Polar 
H10 was selected based on its underlying support as a medically 
graded heart rate sensor [40, 41] and the EliteHRV was selected 
based on its ability to record, store, and export HRV data in a secure 
and user-friendly manner [44]. Particularly, the natural log of the 
root-mean-square difference of successive normal RR intervals (ln-
RMSSD) was used for HRV analyses given its well-documented sup-
port for monitoring physiological fatigue in young female basketball 
players [41] as well as numerous other sport athletes [43]. Follow-
ing the HRV test, the player completed two subsequent Sway tests 
using the Sway Medical, Inc. software (Tulsa, Oklahoma, United 
States) [35–38] via touch screen display as well as tri-axial acceler-
ometry (i.e., motion detection) on an iPad (6th generation) by Apple 
Inc. (Los Altos, California, United States). The Sway test protocols 
have been established as an objective and reliable method for as-
sessing reaction time, impulse control, timed visual processing, and 
working memory [35–38]. Particularly, the first Sway test examined 
the cognitive fatigue status through the Simple Reaction Time (SRT) 
test (ms) [35]. During this test, the player held the iPad horizon-
tally (landscape mode) and moved it as fast possible in any direction 
when the screen display changed from a white to orange color. Each 
SRT test started after a variable delay of 2–4 s in order to prevent 
the player from anticipating the stimulus ahead of time. Each player 
completed five trials. The fastest and the slowest SRT scores were 
excluded in order to remove outliers and reflect only the typical re-
sponse times of the player [34]. Subsequently, the scores of the three 
remaining trials were averaged to calculate the individual score for 
each player. Following the SRT test, the player performed the Sway 
Balance test, which quantified postural sway during the performance 
of a series of tasks to reflect lower-extremity muscle fatigue [45]. 
Specifically, the Sway Balance test consisted of five stance conditions 

(10-s in duration per stance) on a firm surface and with the eyes 
closed. The postural sway was quantified through the iPad’s triaxial 
accelerometer, and the units that corresponded with the accelerations 
were used to calculate the final proprietary Sway Balance score [38].

Subsequently, the test administrator manually performed the stan-
dard Pupil Light Reflex (PLR) test [12, 28] in each player’s eye re-
spectively, using the NeurOptics NPi-200 pupillometer (NeurOptics, 
Laguna Hills, CA, U.S.A.), a medically graded HQIP (Class I medi-
cal device as listed under 21CFR 886.1700) [11, 46]. More spe-
cifically, this HQIP integrated a calibrated full-field white light stim-
ulus with peak wavelengths comprised of red, green, and blue at 
a fixed intensity (1000 Lux) and fixed flash duration (0.8 s) to sim-
ulate a standard pupil light reflex (PLR) [11, 46]. Subsequently, this 
HQIP digitally registered the pupil light response as a video (sam-
pling rate of 30 Hz) for a duration of 3.5 s, followed by a display of 
numeric results on a screen for each eye respectively [11, 46]. The 
device highlighted an outline of the pupil and graphed its displace-
ment over time with an accuracy of 0.03 mm (i.e., practical error of 
0.88% in relation to the average pupil diameter) [11, 46]. Scotopic 
lighting conditions (434–440 lumen/m2) were verified prior to each 
pupil exam by measurement of luminance of less than 2 Lumens 
with a luminometer (Dr. Meter LX1330B Digital Illuminance/Light 
Meter, Hisgadget, Union City, CA, U.S.A.) at the level of the players’ 
eyes. Furthermore, normal forehead temperature was measured and 
controlled (35.4 °​C to 37.4 °C) prior to each test via a forehead ther-
mometer (iProven DMT-489, Beaverton, Oregon, U.S.A.). Each pu-
pil test was conducted sitting stationary looking straight ahead. Each 
player was prompted to maintain a forward head posture and bin-
ocular viewing conditions in a seated position throughout the test. 
The non-test eye was fixated on a neutral wall at 3-m distance to 
the chair’s front leg. The right eye was tested first, immediately fol-
lowed by the left eye. This sequence was completed three consecu-
tive times using 60-s intervals to allow sufficient recovery of the pu-
pil before the next light stimulus [11, 46, 47]. A retest was taken 

TABLE 1. Descriptions of All Pupillometrics.

Pupillometrics Units Description

MaxD Maximum Diameter Mm Maximum pupil size before constriction.

MinD Minimum Diameter Mm Pupil diameter at peak constriction.

PC Percentage of Change % The change in pupil size over time, computed as:

 

LAT Latency mm/s Time of onset of constriction following initiation of the light stimulus.

CV Constriction Velocity mm/s Average of how fast the pupil is constricting after exposure to light.

MCV Maximum Constriction Velocity mm/s Represents the maximum velocity of pupil constriction.

DV Dilation Velocity mm/s The average pupillary velocity when, after having reached the peak constriction, 
the pupil tends to recover and dilate back to the initial resting size.
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conditions (GD+1 and GD+2) at the group level, the Levene test 
was applied as a derivation of the classical one-way analysis of the 
variance (ANOVA) to compute the F-statistics, Effects sizes (expressed 
as “η2” or Eta Squared), Coefficient of Variation (CV), absolute and 
relative differences, Confidence Intervals at 95% (CI95), and p-
values. The post-hoc Tukey test was examined for pairwise com-
parisons. The η2 was interpreted with the following thresholds: small 
effect: η2  =  0.01; medium effect: η2  =  0.06; large effect: 
η2 = 0.14 [49, 50]. Additionally, the magnitude of these differ-
ences were visually presented by a ‘percentage difference’ in which 
postgame data (value) was subtracted by either baseline data or 
pregame data (value) represents, and divided by the baseline or 
pregame data (value). The significance of all inferential statistics was 
set for p < 0.05. All analyses were performed at 95%-Confidence 
Interval. All statistical tests were performed using IBM SPSS Version 
28.0.0.0.

RESULTS 
Descriptive statistics
A paired sample t-test revealed statistically significant difference 
between left and right eye pupillometrics at the group level (mean 
difference = -0.034; p-value < 0.001). Therefore, all statistical 
tests and analyses were performed and analyzed for each eye sep-
arately. The normative data (means and standard deviations) of all 
pupillometrics (at the group level) of both eyes are displayed in  
Table 2a and Table 2b.

Test-retest repeatability
Table 3 displays the ICC’s of all pupillometrics, which range from 
very poor to good (0.286 to 0.963). Particularly, LAT, DV, and MCV 
showed very poor ICCs (< 0.70), whereas CV and PC showed poor 
ICCs (0.70–0.90). However, MinD (left eye), and MaxD (both eyes) 
showed good ICCs (0.95–0.99). Minimal measurement bias was 
detected for all pupillometrics with the maximum bias for the left 
eye being +2.9% (MaxD) and right eye being +1.98% (MaxD). The 
average bias across all pupillometrics was 0.001 ± 0.450. When 
comparing baseline (BL) to post-game (GD+1 and GD+2) timepoints, 
the smallest read difference (SRD) was widest for MaxD (R = 0.340; 
L = 0.318) and MCV (R = 0.304; L = 0.263), and least for LAT 
(R = 0.005; L = 0.005) and DV (R = 0.074; L = 0.085). When 
comparing pre-game (GD-1) to post-game (GD+1 and GD+2) time-
points, the SRD was widest for MaxD (R = 0.285; L = 0.266) and 
MCV (R = 0.249; L = 0.199) and least for LAT (R = 0.007; 
L = 0.007) and DV (R = 0.066; L = 0.068).

Relationships with other biomarkers of game-induced fatigue
With regards to perceptual fatigue, the findings demonstrated a very 
large positive significant correlation between average RPE and MinD 
(r = 0.78, p < 0.05) and MaxD (r = 0.77, p < 0.05). With regards 
to lower-extremity muscle fatigue, Sway Balance (left and right) 
showed a very large positive significant association with MaxD, MinD, 

whenever the HQIP was held incorrectly, or blinking was detected 
by the HQIP. All pupil tests were relatively quick to conduct and did 
not exceed ~4 min in duration per player, and ~60 min in total du-
ration for the entire team. Notably, ease of use was reported by the 
test administrator (i.e., performance coach without previous clinical 
experience in using HQIPs). In particular, a total of 351 pupillary 
measurements were recorded in each eye, without any interference 
with the daily predetermined schedule of the team.

The selected HQIP extracted seven pupillometrics, which repre-
sented parameters of both the Sympathetic Nervous System (SNS) 
function and Parasympathetic Nervous System (PNS) function [11]. 
Furthermore, the HQIP used an algorithm to calculate the overall re-
activity of the pupil (proprietary score), called the Neurological Pupil 
Index (NPi) [11]. However, the authors excluded the NPi pupillometric 
from the final analyses as the company did not publicly provide any 
details on the computation of the NPi. Descriptions and calculations 
for the seven remaining pupillometrics are presented in Table 1.

Finally, within < 1 h following any practice or game, the players 
completed an online survey to record their RPE score based on Borg’s 
rate of perceived recovery status scale of 100 points [38], in which 
0 means ‘very poorly recovered/extremely tired,’ 20 represents ‘poor-
ly recovered/very tired,’ 40 means ‘minimally recovered/ tired,’ 50 de-
notes ‘slightly recovered/somewhat tired,’ 60 signifies ‘moderately 
recovered,’ 80 represents ‘well recovered,’ and 100 represents ‘very 
well recovered/highly energetic’ [39].

Statistical Methods
Prior to the statistical analyses, normal distribution of the dataset 
was confirmed (Shapiro-Wilkinson test; n > 50). Participant demo-
graphic information, including: age, height, body mass, playing po-
sition and role were calculated using descriptive statistics. The pupil-
lometrics were compared between the left and the right eye through 
a paired t-test. The intraclass correlation coefficients (ICCs) were 
computed to examine test-retest reliability for each pupillometric 
using the thresholds outlined by Martins et al. (2014) for the as-
sessment of technological equipment in research and clinical practice: 
very poor: ICC  <  0.70, poor: ICC  =  0.70–0.90, moderate: 
ICC = 0.90–0.95, good: ICC = 0.95–0.99, and very good: ICC 
> 0.99 [48]. The Pearson’s Product Moment Correlation (r) examined 
the linear relationship between each pupillometric and various oth-
er measures of game-induced fatigue and recovery, including: per-
ceptual fatigue (i.e., average daily Borg Rating of Perceived Exertion 
scores) [39], lower-extremity muscle fatigue (i.e., Sway Balance 
Error Scoring System test scores) [45]; cognitive fatigue (i.e., Sway re-
action time score) [34], and ANS fatigue (i.e., lnRMSSD) [42]. The 
Pearson’s correlation coefficients were interpreted using the reference 
standards by Hopkins et al. (2009): trivial: r  <   0.1; small: 
0.1  <  r  <  0.3; moderate: 0.3  <  r  <  0.5; large: 0.5  <  r  <  0.7; 
very large: 0.7  <  r  <  0.9; nearly perfect: r  >  0.9; perfect: 
r  = 1 [49, 50]. To explore whether any pupillometrics differed 
between rested conditions (baseline and GD-1) and fatigued 
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TABLE 2A. Descriptive statistics of all pupillometrics (right eye).

N Mean
Std.  

Deviation
Std.  
Error

95% CI 
Min Max

Lower Bound Upper Bound

MaxD (right) GD-1 35 6.3223 1.02479 .17322 5.9703 6.6743 4.01 8.11

GD+1 35 6.3500 1.01662 .17184 6.0008 6.6992 3.97 7.91

GD+2 34 6.3224 1.06745 .18307 5.9499 6.6948 4.16 8.22

Baseline 8 6.4775 1.06054 .37496 5.5909 7.3641 4.63 7.97

Total 112 6.3421 1.02446 .09680 6.1502 6.5339 3.97 8.22

MinD (right) GD-1 35 3.9794 .76203 .12881 3.7177 4.2412 2.58 5.85

GD+1 35 3.9837 .69930 .11820 3.7435 4.2239 2.58 5.23

GD+2 34 4.0256 .73358 .12581 3.7696 4.2815 2.62 5.65

Baseline 8 3.8788 .76868 .27177 3.2361 4.5214 2.74 5.38

Total 112 3.9876 .72542 .06855 3.8518 4.1234 2.58 5.85

PC (right) GD-1 35 .3720 .03437 .00581 .3602 .3838 .28 .44

GD+1 35 .3769 .03151 .00533 .3660 .3877 .32 .44

GD+2 34 .3703 .03389 .00581 .3585 .3821 .27 .42

Baseline 8 .4013 .03796 .01342 .3695 .4330 .32 .43

Total 112 .3751 .03404 .00322 .3687 .3815 .27 .44

CV (right) GD-1 35 3.2737 .46457 .07853 3.1141 3.4333 2.38 4.37

GD+1 35 3.3029 .42080 .07113 3.1583 3.4474 2.37 4.23

GD+2 34 3.2750 .45240 .07759 3.1171 3.4329 2.42 4.13

Baseline 8 3.4250 .46605 .16477 3.0354 3.8146 2.65 4.08

Total 112 3.2940 .44317 .04188 3.2110 3.3770 2.37 4.37

MCV (right) GD-1 35 5.3266 .77629 .13122 5.0599 5.5932 3.49 6.52

GD+1 35 5.1871 1.10929 .18750 4.8061 5.5682 .63 7.04

GD+2 34 5.2035 .66672 .11434 4.9709 5.4362 4.02 6.37

Baseline 8 5.7250 .66002 .23335 5.1732 6.2768 4.85 6.61

Total 112 5.2741 .86056 .08132 5.1130 5.4352 .63 7.04

LAT (right) GD-1 35 .2131 .02898 .00490 .2032 .2231 .17 .30

GD+1 35 .2223 .02787 .00471 .2127 .2319 .17 .27

GD+2 34 .2147 .02135 .00366 .2073 .2222 .17 .27

Baseline 8 .2150 .01604 .00567 .2016 .2284 .20 .23

Total 112 .2166 .02573 .00243 .2118 .2214 .17 .30

DV (right) GD-1 31 1.4132 .25639 .04605 1.3192 1.5073 1.02 2.28

GD+1 34 1.3756 .20289 .03480 1.3048 1.4464 .90 1.82

GD+2 32 1.3850 .24336 .04302 1.2973 1.4727 .97 2.14

Baseline 7 1.4343 .24845 .09391 1.2045 1.6641 1.18 1.84

Total 104 1.3937 .23263 .02281 1.3484 1.4389 .90 2.28
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TABLE 2B. Descriptive statistics of all pupillometrics (left eye).

N Mean
Std.  

Deviation
Std.  
Error

95% CI
Min Max

Lower Bound Upper Bound

MaxD (left) GD-1 35 6.0817 .99069 .16746 5.7414 6.4220 3.49 7.68

GD+1 35 6.0891 .95812 .16195 5.7600 6.4183 3.65 7.56

GD+2 34 6.1238 .97442 .16711 5.7838 6.4638 3.94 7.85

Baseline 8 6.2650 1.03907 .36737 5.3963 7.1337 4.39 7.73

Total 112 6.1099 .96662 .09134 5.9289 6.2909 3.49 7.85

MinD (left) GD-1 35 3.7314 .64574 .10915 3.5096 3.9532 2.34 5.21

GD+1 35 3.6911 .60097 .10158 3.4847 3.8976 2.45 4.92

GD+2 34 3.7662 .63090 .10820 3.5460 3.9863 2.48 5.20

Baseline 8 3.7687 .66827 .23627 3.2101 4.3274 2.77 4.95

Total 112 3.7321 .62115 .05869 3.6157 3.8484 2.34 5.21

PC (left) GD-1 35 .3851 .03568 .00603 .3729 .3974 .30 .44

GD+1 35 .3929 .03259 .00551 .3817 .4041 .32 .47

GD+2 34 .3847 .02339 .00401 .3765 .3929 .34 .44

Baseline 8 .3975 .02964 .01048 .3727 .4223 .36 .44

Total 112 .3883 .03087 .00292 .3825 .3941 .30 .47

CV (left) GD-1 35 3.3491 .56844 .09608 3.1539 3.5444 1.60 4.21

GD+1 35 3.2971 .45486 .07689 3.1409 3.4534 2.18 4.16

GD+2 34 3.3165 .46990 .08059 3.1525 3.4804 2.17 4.32

Baseline 8 3.4075 .56835 .20094 2.9323 3.8827 2.23 3.96

Total 112 3.3271 .49930 .04718 3.2337 3.4206 1.60 4.32

MCV (left) GD-1 35 5.4780 .81903 .13844 5.1967 5.7593 3.20 6.67

GD+1 35 5.3737 .77775 .13146 5.1065 5.6409 3.45 6.77

GD+2 34 5.3509 .73337 .12577 5.0950 5.6068 3.64 6.91

Baseline 8 5.6800 1.02745 .36326 4.8210 6.5390 3.94 7.18

Total 112 5.4213 .79076 .07472 5.2732 5.5693 3.20 7.18

LAT (left) GD-1 35 .2320 .02753 .00465 .2225 .2415 .20 .27

GD+1 35 .2186 .02992 .00506 .2083 .2288 .17 .27

GD+2 34 .2118 .02167 .00372 .2042 .2193 .17 .27

Baseline 8 .2063 .03420 .01209 .1777 .2348 .13 .23

Total 112 .2198 .02828 .00267 .2145 .2251 .13 .27

DV (left) GD-1 34 1.3765 .24277 .04164 1.2918 1.4612 .96 1.84

GD+1 33 1.3009 .21842 .03802 1.2235 1.3784 .87 1.79

GD+2 33 1.3936 .24903 .04335 1.3053 1.4819 .94 2.09

Baseline 7 1.5057 .43412 .16408 1.1042 1.9072 .82 2.04

Total 107 1.3669 .25499 .02465 1.3180 1.4158 .82 2.09
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TABLE 3. ICC scores for all 7 pupillometrics

Pupillometrics
ICCs (CI95)

Right Left

MaxD (mm) 0.955 (0.937–0.968)** 0.963 (0.949–0.974)**

MinD (mm) 0.945 (0.920–0.962)** 0.955 (0.935–0.970)**

PC (%) 0.756 (0.680–0.819)** 0.749 (0.674–0.813)**

CV (mm/sec) 0.755 (0.679–0.818)** 0.827 (0.770–0.873)**

MCV (mm/sec) 0.626 (0.528–0.714)** 0.667 (0.575–0.748)**

LAT (sec) 0.452 (0.335–0.566)** 0.287 (0.165–0.413)**

DV (mm/sec) 0.501 (0.379–0.616)** 0.656 (0.558–0.742)**

** p < 0.001

TABLE 4. Pearson’s correlation coefficients between the 7 pupillometrics and other biomarkers of game-induced fatigue and recovery.

Pupillometrics Sway SRT lnRMSSD Sway Balance (Right) Sway Balance (Left) Average RPE

MaxD 0.70* -0.82* 0.77* 0.79* 0.77*

MinD 0.69* 0.77* 0.78* 0.78* 0.78*

PC -0.17 0.22 -0.28 -0.20 0.28

CV -0.62 0.74* -0.75* -0.75* 0.45

MCV -0.62 0.74* -0.75* -0.76* 0.44

Lat 0.14 -0.22 -0.10 -0.10 0.10

DV -0.20 0.22 -0.10 0.00 0.24

* Coefficients presented in bold are significant (p < 0.05)

detected (F = 4.023, η2 = 0.109 p = 0.009). In particular, a post-
hoc Tukey HSD test revealed that LAT (left) on GD-1 
(0.232 ± 0.027 mm/s) was significantly higher than on GD+2 
(0.212 ± 0.216  mm/s) (mean difference  =  0.202, std. er-
ror = 0.006, p = 0.013, η2 = 0.101), thus the time from onset of 
the light stimulus to pupil constriction in the left eye typically took 
longer on GD-1 than on GD+2. Although LAT (left) was the only 
pupillometric that could detect a statistically significant change be-
tween rested conditions and fatigued conditions (p < 0.05), small-
to-moderate effect sizes were detected for PC (right) (η2 = 0.052, 
p = 0.121), MCV (right) (η2 = 0.026, p = 0.410), LAT (right) 
(η2 = 0.023, p = 0.470), PC (left) (η2 = 0.021, p = 0.518), and 
MCV (left) (η2 = 0.013, p = 0.587). All other pupillometrics showed 
very small (η2 < 0.01) and non-significant effects (p > 0.05) across 
all timepoints. With regards to the magnitude of change between 
timepoints (% difference using Equation 1), the largest differences 
were found between baseline and GD+2, in which MCV (both eyes) 
represented the largest relative difference (left  =  -7.77%; 
right = -5.64%) (Table 5a and 5b; Figure 1).

CV, and MCV (r = 0.75–0.78, p < 0.05). With regards to cognitive 
fatigue, a large significant positive relationship was identified between 
Sway SRT scores and MinD (r = 0.69, p > 0.05) and a very large 
significant positive relationship between Sway SRT scores and MaxD 
(r = 0.70, p > 0.05). Finally, with regards to physiological fatigue, 
a very large positive significant relationship was detected between 
lnRMSSD scores and MinD (r = 0.77, p < 0.05), CV (r = 0.74, 
p < 0.05), and MCV (r = 0.74, p < 0.05) whereas a very large 
inverse significant relationship was found between MaxD and ln-
RMSSD (r = -0.82, p < 0.05) (Table 4). All significant correlations 
have been highlighted in bold in table 4. Overall, the combination 
of MaxD, MinD, CV and MCV demonstrated to be the most repre-
sentative of overall game-induced fatigue.

Time course of pupillometrics following games (at the group 
level)
Initially, the ANOVA analysis revealed that there was no statistically 
significant difference in pupillometrics between rested states (base-
line and GD-1) and fatigued states (GD+1, GD+2) (p < 0.05), 
except for LAT (left) in which a medium-to-large difference was 
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TABLE 5A. ANOVA results of the pupillometric changes between baseline (BL) and post-game timepoints (GD+1 and GD+2)

ANOVA  
results

BL to GD+1 BL to GD+2

Mean
Difference

Std.
Error F η2 p Mean

Difference
Std.
Error F η2 p

MaxD (mm) (R) .127 .406 .101 .002 .752 .155 .407 .137 .003 .713

MinD (mm) (R) -.104 .287 .142 .003 .709 -.146 .288 .255 .006 .616

PC (%) (R) .024 .013 3.623 .081 .064 .030 .013 5.173 .115 .028

CV (mm/s) (R) .122 .175 .528 .013 .472 .150 .175 .704 .017 .406

MCV (mm/s) (R) .537 .337 1.884 .040 .197 .521 .338 3.976 .090 .049

LAT (s) (R) -.007 .010 0.502 .012 .483 .000 .010 .001 .000 .971

DV (mm/s) (R) .058 .097 .451 .011 .506 .049 .981 .234 .006 .631

MaxD (mm) (L) .175 .383 .213 .005 .647 .141 .384 .133 .003 .718

MinD (mm) (L) .077 .246 .104 .003 .748 .002 .247 .000 .000 .992

PC (%) (L) .004 .012 .136 .003 .714 .012 .012 1.752 .042 .193

CV (mm/s) (L) .110 .197 .350 .008 .557 .091 .198 .225 .006 .638

MCV (mm/s) (L) .306 .312 .896 .021 .349 .329 .312 1.116 .027 .297

LAT (s) (L) -.012 .010 1.050 .025 .312 -.005 .010 .333 .008 .567

DV (mm/s) (L) .204 .168 3.464 .084 .070 .112 .169 .885 .023 .353

* Coefficients presented in bold are significant (p < 0.05)

TABLE 5B. ANOVA results of the pupillometric changes between pre-game (GD-1) and post-game timepoints (GD+1 and GD+2)

ANOVA  
results

GD-1 to GD+1 GD-1 to GD+2

Mean
Difference

Std.
Error F η2 p Mean

Difference
Std.
Error F η2 p

MaxD (mm) (R) -.028 -.248 .013 .000 .910 -.000 .249 .000 .000 1.000

MinD (mm) (R) -.004 .175 .001 .000 .981 -.046 .176 .066 .001 0.799

PC (%) (R) -.004 .008 .380 .006 .540 .001 .008 .430 .001 0.836

CV (mm/s) (R) -.029 .106 .076 .001 .784 -.001 .107 .000 .000 0.991

MCV (mm/s) (R) .139 .205 .371 .005 .544 .123 .207 .498 .007 0.483

LAT (s) (R) -.009 .006 1.810 .026 .183 -.001 .010 .065 .001 0.800

DV (mm/s) (R) .037 .058 .435 .007 .512 .028 .059 .201 .003 0.656

MaxD (mm) (L) -.007 .233 .001 .000 .975 -.042 .235 .032 .000 0.859

MinD (mm) (L) .040 .150 .073 .001 .788 -.034 .151 .051 .001 0.822

PC (%) (L) -.007 .007 .892 .013 .348 .000 .007 .004 .000 0.952

CV (mm/s) (L) .052 .120 .179 .003 .674 .032 .121 .068 .001 0.796

MCV (mm/s) (L) .104 .190 .298 .004 .587 .104 .190 .460 .007 0.500

LAT (s) (L) .013 .006 3.819 .053 .055 .020 .006 11.469 .146 0.001

DV (mm/s) (L) .075 .061 1.790 .027 .186 -.017 .061 .82 .001 0.776

* Coefficients presented in bold are significant (p < 0.05).
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FIG. 1. The percentage difference of pupillometrics between test moments.

open access to ICC results from PLR tests using the Neuroptics NPi-
200 in an athletic population (i.e., 186 collegiate athletes across 
eight sports) [51]. Unfortunately, the only pupillometric reported in 
their investigation was the Neurological Pupil Index (NPI) (i.e., a pro-
prietary score generated by the manufacturer). Furthermore, the PLR 
tests were completed at different time intervals, executed by multiple 
trained test administrators, and focused on a different use case (i.e., 
the detection of traumatic brain injury instead of fatigue monitoring). 
In turn, meta analyses and comparative inferences remain challeng-
ing. From a general viewpoint, the ICCs reported in this pilot study 
tend to follow the trend of various HQIPs applied in different use 
cases. For instance, Zheng et al. (2022) [52] also reported that LAT 
was the least reliable of all pupillometrics (i.e., very poor ICC of 0.65) 
using the RAPDx pupillometer (Konan Medical, Irvine, California, 
USA) and Chopra et al. (2020) [53] reported moderate to good ICCs 
for MinD and MaxD (ICC > 0.90) using the same RAPDx pupil-
lometer.

Taking into account the abovementioned limitations, combined 
with the overall lack of consistency and transparency in pupillometric 
research over the past 50 years (as recently highlighted by an inter-
national panel of pupillometry experts across disciplines) [47], fu-
ture researchers may use this pilot study as a baseline framework 
and prioritize transparency and standardization when executing their 
initiatives on this research topic.

The relationship between pupillometrics and other biomarkers of 
game-induced fatigue
In response to the second research question, four pupillometrics were 
identified as the strongest indicators of game-induced fatigue in pro-
fessional female basketball players. In particular, MaxD and MinD 
represented the strongest indicators for all other biomarkers of game-
induced fatigue (r = 0.69–0.82, p < 0.05), whereas CV and MCV 
were identified as the strongest indicators for cognitive, lower-ex-
tremity muscle, and physiological biomarkers of game-induced fatigue 

DISCUSSION 
The main purpose of this pilot study was to explore the potential 
usefulness of HQIPs in the context of monitoring game-induced fatigue 
in professional female basketball players. The reported findings may 
not only serve as a benchmark for future comparisons and hypoth-
esis testing in athletic populations that includes PLR data from au-
tomated pupillometry, but also provide point estimates and variance 
for PLR measures, as well as inferential statistics to describe the 
effect of game-induced fatigue on pupillary behaviour, when used in 
naturalistic elite sports environment. Overall, the main findings of 
this pilot study suggest that (1) two out of seven pupillometrics 
represented good repeatability scores (MinD and MaxD) 
(ICC = 0.95–0.99), (2) Statistical significant relationships were 
found between MaxD, MinD, and all other biomarkers of game-in-
duced fatigue (r = 0.69–0.82, p < 0.05), as well as between CV, 
MCV, and biomarkers of cognitive, lower-extremity muscle, and 
physiological game-induced fatigue (r = 0.74–0.76, p < 0.05), and 
(3) Statistically significant differences were found between rested 
and fatigued states for three pupillometrics: PC (right) and MCV 
(right), and LAT (left) (p < 0.05).

The test-retest repeatability
In response to the first research question, good ICCs were reported 
for two out of seven pupillometrics, in particular: MinD (left) and 
MaxD (left and right) (0.95–0.99). Conversely, poor ICCs were re-
ported for CV and PC (0.70–0.90) and very poor ICCs were re-
ported for LAT, DV, and MCV (< 0.70). Nevertheless, the smallest 
read difference was extremely narrow for LAT in both eyes 
(0.005–0.007) as well as DV in both eyes (0.066–0.085). Therefore, 
the quantification of the maximum and minimum pupil diameter 
seem to be least prone to errors or noise due to external factors when 
examining professional female basketball players. However, this re-
mains to be questioned as to the best of the authors knowledge, 
Swanson et al. (2017) [51] were the only researchers that provided 
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(r = 0.74–0.76, p < 0.05). Hence, keeping track of these four 
pupillometrics on a daily basis may present a multi-modal solution 
to better understanding the psycho-physiological processes that un-
derpin game-play fatigue in elite sports settings. However, the lack 
of existing literature on pupillometry in relation to sports-specific 
fatigue creates barriers for deeper comparative analyses. From a gen-
eral perspective, the reported findings in this pilot study tend to align 
with previous investigations that examined the role of pupillometry 
in acute human fatigue. For instance, previous researchers have 
revealed strong relationships between multiple pupillometrics and 
biomarkers of HRV indices (e.g., lnRMSSD) [12, 14, 15, 54], as 
well as lower-extremity muscle fatigue (e.g. Postural Sway) [55, 56], 
subjective ratings of effort and tiredness from prolonged listening and 
attentional efforts) [57], subjective ratings of perceived exertion from 
muscular contraction during a power grip task [58]. Neverthelesss, 
there was a clear lack of consistency in terms of the selected testing 
timeframes (i.e., measuring before, during, or after given tasks or 
events), testing conditions (i.e., naturalistics vs. laboratory settings), 
selected HQIPs (i.e., self-engineered vs. commercial instruments), 
extracted pupillometrics (i.e., standard vs. proprietary scores and 
algorithms), and none of the investigations involved professional 
basketball competition. Acknowledging these limitations, and given 
that pupil responses vary based on the sport and context in which 
players participate in [kaltsatou, filipe], more detailed comparative 
analyses remain inappropriate at this point of time. Hence, a vigilant, 
transparent, and consistent research strategy is required to expand 
upon our existing knowledge regarding this use case.

The time-course of pupillometrics from rested to fatigued states
In response to the third research question, three pupillometrics were 
capable of detecting a significant change from rested states (baseline 
and GD-1) to fatigued states (GD+1 and GD+2). In particular, PC 
(right) (F = 5.173, η2 = 0.115 p = 0.028) and MCV (right) 
(F = 3.976, η2 = 0.090 p = 0.049) significantly decreased from 
baseline to GD+2, while LAT (left) (F = 4.023, η2 = 0.109 p = 0.009) 
significantly increased from GD-1 to GD+2. Hence, at timepoints 
where residual fatigue was expected to remain present (48 h follow-
ing games), the pupils constricted slower (MCV), with a smaller 
magnitude (PC), while it took longer to begin its constriction phase 
(LAT). This further supports the underlying physiological concept of 
pupillary behavior as LAT can be regarded as an index of sympatho-
vagal balance (i.e., higher values indicate sympathetic domi-
nance) [14], whereas PC and MCV can be regarded as an index of 
parasympathetic activity (i.e. higher values indicate parasympa-
thetic dominance) [14]. Hence, this confirms, at least in part, that 
the players’ ANS were not fully reverted to normal levels 48-h fol-
lowing games. Interestingly, this trend of LAT, PC, and MCV is incon-
sistent with earlier findings by Kaltsatou et al. [14] who examined 
the immediate effects of physical exertion (maximal ergometer stress 
test) on pupillary behavior in power -and endurance-trained athletes. 
Specifically, in their investigation, LAT decreased, while MCV and PC 

increased from peak exertion to 5-min following the test (when heart 
rate return to baseline levels). Consequently, similar to how sports 
scientists typically evaluate traditional game-induced fatigue markers 
(e.g. Heart Rate Variability indices) [59, 60, 61], the before-after, 
day-to-day, and week-to-week fluctuations in pupillometics should 
be analyzed distinctively and individually, and contextualized against 
other external factors.

It is also important to acknowledge that the reported findings in 
this pilot study does not inform about the underlying factors that may 
have contributed to its overall acute fatigue state, nor does it imply 
the practical relevance of it. For instance, in a recent systematic re-
view on post-game recovery kinetics in team ball sport athletes, 
Doeven et al. [62] highlighted the many covariables that play an in-
fluential role on the recovery dynamics of each player (e.g., menstru-
al cycle, physical fitness, role within the team, playing time, exer-
tion, playing level, playing style, age, gender, genetic make-up, game 
location, preceding travel duration, opponent quality, imposed work-
load, lifestyle habits, sleep quantity and quality) [62]. Hence, future 
researchers are encouraged to integrate these cofactors in future in-
vestigations in order to pinpoint the underlying mechanisms for pu-
pillary change following games. Additionally, to determine the prac-
tical relevance of these changes, future researchers may include 
predetermined anchor points that are practically relevant to their or-
ganization (e.g., specific injury occurrence per minute of activity ex-
posure, on-court game-play performance metrics, pre-game alert-
ness levels) [1, 59, 60]. This anchoring approach, often referred to 
as the Minium Clinical Important Difference (MCID), would allow 
practitioners to track pupillometrics per player over time and trans-
form them into a prediction or prescription tool informing the onset 
to critical states via real-time alerting or traffic-light based visualiza-
tion systems [59, 60, 61, 62]. For instance, Umesh et al. (2015) [63]
were able to predict a self-reported Visual Analogue Scale (VAS) state 
of sleepiness score of ≥ 6 (the target variable) by using a MCV thresh-
old value (age adjusted) of 2.8, with a sensitivity of 83% and spec-
ificity of 84%. Similarly, future researchers could determine the MC-
ID’s for MaxD, MinD, CV, and MCV against their self-determined 
threshold values.

Finally, emerging technologies may enable faster interventions in 
the future. For instance, Stoeve et al. (2022) [64] created a VR-
based stress test during a football goalkeeping scenario, and achieved 
a performance of 87.3% accuracy through the Random Forest clas-
sifier, claiming a comparable outcome to state-of-the-art approach-
es fusing eye tracking data and additional biosignals. Given the strong 
resurgence and further democratization of VR, Mixed Reality (MR) 
and augmented reality (AR) based eye-tracking applications in re-
cent years [65–68], new opportunities may arise to accelerate pu-
pillometric research in the context of real-time athlete monitoring.

In summary, the findings of this pilot study promotes HQIPs as 
a potential instrument for monitoring game-induced fatigue in female 
professional basketball players. From an ergonomic standpoint, the 
PLR testing routine took little time and effort on the practitioner’s 
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Overall, the pupillometrics MinD, MaxD, CV, and MCV were identified 
as the most promising indicators of game-induced fatigue in female 
professional basketball players. However, it’s important to acknowledge 
that this research line is still in its infancy, and the findings stem from 
a small homogenous sample, thus the statistical inferences remain 
indicative rather than confirmative or directive. However, future re-
searchers are encouraged to leverage this pilot study as a baseline 
framework for future investigations, and ensure standardization is 
prioritized throughout the process in order to maximize the reproduc-
ibility of findings across a variety of sports, timeframes, contexts, and 
use cases.
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side, and good test-retest repeatability scores were reported for two 
pupillometrics (MaxD and MinD). Additionally, strong relationships 
were found for four pupillometrics (MaxD, MinD, CV, and MCV) and 
all other biomarkers of game-induced fatigue, and three pupillo-
metrics were able to distinguish rested states from fatigued states 
(LAT, PC, and MCV). Although these preliminary findings tend to 
support the potential adoption of pupillometry as an athlete moni-
toring tool in elite sports settings, researchers should remain cau-
tious when drawing conclusive inferences as the dataset was extract-
ed from a relatively small and homogenous sample, tracked over 
a relatively short timeframe (4 games across 5 weeks). Therefore, 
future researchers should aim to cover a larger and more heteroge-
nous sample across various time intervals to allow for more precise 
estimations of “normal pupillary behaviour” in elite athletes. The re-
cent technological advancements in HQIPs that are compact and 
versatile (e.g., smartphone-based and VR-based pupillome-
ters) [63–70] may further accelerate and facilitate investigations on 
this topic.

CONCLUSIONS 
HQIPs have opened a new window of opportunities for sports practi-
tioners given its ease of use and ability to extract objective insights on 
player fatigue in a quick, reliable, valid, and non-invasive character. 
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