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Abstract
Purpose: To apply a deep learning approach to automatically detect implanted seeds on a fluoroscopy image in 

prostate brachytherapy. 
Material and methods: Forty-eight fluoroscopy images of patients, who underwent permanent seed implant (PSI) 

were used for this study after our Institutional Review Boards approval. Pre-processing procedures that were used to 
prepare for the training data, included encapsulating each seed in a bounding box, re-normalizing seed dimension, 
cropping to a region of prostate, and converting fluoroscopy image to PNG format. We employed a pre-trained faster 
region convolutional neural network (R-CNN) from PyTorch library for automatic seed detection, and leave-one-out 
cross-validation (LOOCV) procedure was applied to evaluate the performance of the model. 

Results: Almost all cases had mean average precision (mAP) greater than 0.91, with most cases (83.3%) having 
a mean average recall (mAR) above 0.9. All cases achieved F1-scores exceeding 0.91. The averaged results for all the 
cases were 0.979, 0.937, and 0.957 for mAP, mAR, and F1-score, respectively. 

Conclusions: Although there are limitations shown in interpreting overlapping seeds, our model is reasonably 
accurate and shows potential for further applications. 
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Purpose 
Prostate cancer is the most common cancer among 

men, and is the second-leading cause of cancer deaths in 
men in the United States [1]. Treatment methods include 
hormone therapy, chemotherapy, prostatectomy, and 
radiation therapy [2-4]. Hormone therapy reduces levels 
of hormones in the body to prevent them from allowing 
cancer cells to grow further. In chemotherapy, drugs are 
fed into the patient’s bloodstream to kill the tumor cells. 
Prostatectomy involves surgically removing all or parts 
of the prostate. 

Radiation therapy uses high energy photons or 
charged particles to kill cancer cells. There are two main 
types of radiation therapy: external beam radiation thera-
py (EBRT) and brachytherapy. In EBRT, a medical linear 
accelerator produces high energy X-rays, and beams of 
radiation are focused on the prostate gland. In high-dose-
rate (HDR) brachytherapy, radioactive source (e.g., iridi-
um-192 [192Ir]) is temporarily placed in planned locations 
in the prostate for irradiating target volume. While, in low-
dose-rate (LDR) brachytherapy, small radioactive seeds 
are implanted permanently into the patient’s prostate in 

order to deliver radiation directly to the gland while min-
imizing damage caused by the radiation dose received 
by nearby healthy tissue. These radioactive sources are 
generally iodine-125 (125I), palladium-103 (103Pd), or cesi-
um-131 (131Cs) seeds. Number of seeds is determined by 
a treatment planning system, and implanted seeds remain 
permanently in the prostate and radioactive seeds decay 
to a background level after a period of time. 

In the operating room, radioactive seeds are placed 
into the prostate gland using hollow needles with ultra-
sound image guidance. Handling of radioactive seeds is 
subject to federal regulations in the United States for radi-
ation safety, and a radiation survey has to be performed 
at the end of every procedure. One of the important tasks 
is to make sure the number of seeds implanted in the pa-
tient are correct according to the treatment plan. To the 
best of our knowledge, there are no existing methods of 
auto-detecting of implanted seeds on fluoroscopy imag-
es, except counting with naked eyes. In current clinical 
practice, the correctness is inferred by counting the left-
over seeds and assuming that the rest of seeds are placed 
inside the patient’s prostate gland. However, there is no 
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actual counting of the number of seeds shown on the flu-
oroscopy. It is to note that ultrasound image is not suffi-
cient to detect all the seeds, and the only other commonly 
available imaging modality in operating room (OR) is 
C-ARM fluoroscopy. In rare situations, seeds could be 
sucked into the withdrawing needle or block the opening 
of the needle, and seeds could drop out of the patient or 
be carried away in the patient’s body with bloodstream. 
In these scenarios, to count the number of seeds dis-
played in the fluoroscopy that are actually in the patient’s 
prostate, is a definitive verification. In addition, as a good 
practice, taking a final fluoroscopy at the end of a proce-
dure to ensure that all seeds are inside the patient can rule 
out the assumption from inference by counting only the 
leftover seeds. At the end of a surgery, a radiation detec-
tor is used to perform a survey of the surrounding area 
to ensure that there are no radiative seeds left outside the 
patient. In an operating room, where the goal is to accom-
plish tasks as quickly and safely as possible, manually 
counting every seed while under pressure would con-
sume too much time, and is difficult due to large num-
ber of seeds (usually more than 50) implanted and their 
diminutive size. 

In this work, we proposed the use of region-based con-
volution neural networks (R-CNN) [5] approach for auto-
matic seed detection in a fluoroscopy image. R-CNN has 
a number of useful applications, primarily in object detec-
tion. We investigated the efficacy of using R-CNN for seed 
detection to reduce the time needed to acquire an accurate 
count of the number of seeds implanted in the patient. 

Material and methods 
Dataset and pre-processing 

Forty-eight fluoroscopy images of patients who un-
derwent prostate seed implant (PSI) from January 2014 to 

March 2021 for this study (STUDY20210259) were investi-
gated, after our University Hospitals Institutional Review 
Boards (UH IRB) approval. Radioactive seeds used in the 
patients were 125I (AgX100) produced by Theragencis 
Corporation, Buford, GA. An 125I seed consists of a cylin-
drical titanium encapsulation, which contains a silver rod 
substrated by 125I, and physical dimension of the seed is 
4.5 mm in length and 0.8 mm in diameter. Fluoroscopy 
images were acquired with a  GE OEC C-ARM medical 
system. Kilo-voltage peak of X-ray tube ranged from 
81 kV to 105 kV, and exposure time was from 350 msec  
to 608 msec, with a radiation setting of high-dose expo-
sure. Dimensions of the image in pixels were 980 × 980. 
During the seed implant procedure in the operating 
room, a Foley catheter was placed in the patient’s blad-
der to drain urine, and diluted contrast was injected into 
a Foley balloon. The Foley is then retracted to the bladder 
neck. A radiation oncologist then examined the patient’s 
prostate using a transrectal ultrasound (TRUS) probe to 
localize the prostate apex and base, and then TRUS imag-
es were acquired. A treatment plan was generated based 
on ultrasound images. A device, called ‘Mick® applicator’ 
(Mick Radio-Nuclear Instruments, Inc.) was applied to 
deliver the seeds into the prostate using a template grid. 
Fluoroscopy images were taken to verify locations of the 
implanted seeds, and to ensure no seeds were in the blad-
der. The other purpose of the fluoroscopy image was to 
verify the number of implanted seeds by actually count-
ing the seeds in the image. Two examples of the fluoros-
copy image are shown in Figure 1. The Foley balloon in 
the bladder, TRUS probe at the apex (Figure 1A), and the 
base (Figure 1B) of the prostate from two different cases 
with the implanted seeds can be clearly seen. 

Four pre-processing steps were used to prepare for 
the training data. First, we manually contoured each seed 
with a  brush tool using MIM software v. 7.0.6 (Cleve-

Fig. 1. A, B) Example of two original fluoroscopy images in training dataset (case #1 and #2)
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land, OH, USA). Initially, we tried to use an automatic 
contour tool, which was based on pixel intensity provid-
ed in MIM software, but it did not meet our expectation. 
Therefore, we contoured each individual seed manually, 
and the number of contoured seeds was the ground truth 
of counting. With the contour data, we were able to find 
bounding box for each seed, represented by (xmin, ymin), 
(xmax, ymax), which served as the ground truth bound-
ing box. The second step was normalization for the seed 
size. We observed that the seeds on different images had 
different sizes, because the magnification factor for each 
case due to the distance of X-ray tube to the patient sur-
face was different. The difference also originated from the 
orientation of the seeds relative to X-ray direction inside 
the patient. Since no distance information was provided 
in radiographic fluoroscopy (RF) DICOM tags, we could 
not derive the magnification factor directly. Therefore, 
a simple method was used to understand the factor. We 
decided on an upright seed from each image, and ran-
domly chose one of them as a reference seed. Bounding 
box of the reference seed was applied to normalize all 
other images by matching the dimension of the chosen 
seed to that of the reference seed. Image resolution was 
kept as 1 : 1 (no units since they were ratios). Then, we 
cropped each image manually into a  rectangle region, 
which had the implanted seeds. The cropped images had 
dimensions ranging from 300 to 800 pixels for both (I, J) 
directions. Finally, since the input to the network (fast-
er R-CNN) required images in RGB color space (3 data 
channels), we needed to convert the fluoroscopy image 
into PNG format. Mean (x) and standard deviation (δ) 
of the image pixel value were calculated first. Lower 
and upper boundaries of a rescale table was set as (x–3δ,  
x+3δ). The rescale table was used to map the image pix-
el value to a value between 0 and 255 (data type of un-
signed char). Rescaled grayscale values were applied 
for each color channel, that is, the values of red, green, 
and blue channel were the same. Therefore, the results 
were not dependent on color channels, and original data 
values were preserved. The final input image data to the 
network was in PNG format, and contained no patient 
identification information.

Learning network 

Faster R-CNN [5] has been successfully applied to 
a  number of tasks for object detection and localization. 
It is one of the accurate deep learning models that pre-
dicts both bounding boxes and class scores for objects in 
an image. In faster R-CNN, convolutional feature maps 
are first extracted from a fully convolutional network and 
then, a separate network is used to predict the region pro-
posals. It eliminates the selective search and allows the 
network to learn the regional proposals, which makes it 
faster. In our work, we used an implementation of this 
network in an open source machine learning library (Py-
Torch) [6]. We started with an example from a tutorial of 
this library (TorchVision Objection Detection) and adapt-
ed the code to our project. 

A transfer learning technique on our datasets of fluo-
roscopy images was employed to train a CNN for auto-

matically detecting the implanted seeds in the image [7, 
8]. Transfer learning is a machine learning method that 
uses a  pre-trained model based on a  large dataset, and 
applies the model to a user-specified task. The recognized 
features that were obtained by a pre-trained model can 
facilitate the training process for user-provided data. In 
our case, we used a pre-trained faster R-CNN model on 
COCO object [9] localization dataset with a  ResNet-50 
backbone, and fine-tuned it for training on our image 
dataset. ResNet-50 [10] consists of four convolution stag-
es, with a total of 50 layers. A pre-trained model can be 
obtained from TorchVision in the PyTorch library with 
a function call (fasterrcnn_resnet50_fpn). 

To evaluate the performance of our model, the leave-
one-out cross-validation (LOOCV) procedure [11] was 
used. LOOCV is a k-fold cross-validation method, where 
k equals N, and N is the number of training data points in 
the dataset. K-fold cross-validation can be applied to es-
timate the performance of a machine learning algorithm 
for predictions on data not used during the training of 
the model. The parameter “k” is the number of subsets 
that a dataset is split into. In the training, one subset is 
held out as a test set, so that the other k-1 subsets are used 
as training datasets, and each subset in the k-fold will be 
used as a test set. The model performance was evaluated 
using a summary statistics from the results of the hold-
out training datasets. In LOOCV, each case is used as the 
test data, and therefore a  model is generated and eval-
uated for each case. The procedure is computationally 
expensive; however, it is appropriate for a small dataset, 
such as 48 cases in the present study. 

Performance metrics 

The performance of algorithm was measured using 
the mean average precision and recall at different inter-
section over union (IoU) thresholds [12]. The detected box 
of a seed was compared with the ground truth bounding 
box by calculating IoU, which was defined as: 

IoU = 
A ∩ B
A  B  ,

where A  is the predicted bounding box, and B is the 
ground truth bounding box. It specified the amount of 
overlap between the predicted and ground truth bound-
ing boxes, ranging from 0 (no overlap between the two 
sets) to 1 (completely overlapped). To define a hit-or-miss 
detection of an object, an overlap criterion was used. For 
example, for a given threshold of 0.5, a predicted bounding 
box was considered a detected seed, deemed as true pos-
itive (TP), if the intersection over union with the ground 
truth bounding box was greater than 0.5; otherwise, no 
seed was considered detected, and it was deemed false 
positive (FP). If there was no detection of a true bounding 
box, it was false negative (FN). At a given threshold IoU 
value t, the precision and recall were calculated as: 

precision(t) = TP(t)
TP(t) + FP(t) ,

recall(t) = TP(t)
TP(t) + FN(t) .

The precision is the ratio of the number of correct-
ly predicted seeds (TP), divided by the total number of 
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model bounding box predictions (whether correctly pre-
dicted or no), and the recall is the ratio of the number of 
correctly predicted seeds (TP), divided by the total num-
ber of correctly predicted seeds plus the number of true 
seeds not detected by the algorithm. The mean average 
precision (mAP) and recall (mAR) for one fluoroscopy 
image were calculated as the mean of the above preci-
sion and recall values at each IoU threshold, where t is 
the threshold IoU value, and T is the total number of the 
defined threshold values: 

mAP = 1T ∑tprecision(t)  ,

mAR = 1
T ∑trecall(t)  .

Additionally, F1-score was calculated according to 
the following formula:

F1score = 2 × mAR × mAP
mAR + mAP .

We employed a  Python application programming 
interface library called ‘pycocotools’ for the calculation 
of the above-mentioned metrics. The confidence score of 
each seed detected by the model in the image was set to 
0.4, i.e., all of the predicted bounding boxes with a confi-
dent score above 0.4 were considered as positive boxes. 

Results 
The learning algorithm based on leave-one-out 

cross-validation was evaluated, and the results for each 
test leave-one-out dataset were reported. The training 
and testing were carried out using a  CUDA-enabled 
graphical card (TITAN XP), with 12 GB display memory. 
We used the following parameter settings of PyTorch im-
plemented faster R-CNN for this project: number of ep-
och = 50, number of classes = 2 (background and radioac-
tive seeds), initial learning rate = 0.005, decay rate = 5.e-4,  
momentum = 0.9, number of box detections per image = 
200 (assuming that the number of implanted seeds did 
not exceed 200), weights on the bounding box = (1, 1, 1, 1),  
and for other options, such as parameters in the region 
proposal network, the default settings in the PyTorch li-
brary was applied. 

Figure 2 shows the detection results of mAP and mAR 
for each case. All cases, except one, had mAP values > 0.9. 

There were 8 cases (16.7%) that had mAR values < 0.9, but 
greater than 0.85, and 40 cases (83.3%) were with mAR  
> 0.9. F1-scores for all the cases were greater than 0.9, and 
are shown in Figure 3. The averaged results were 0.979 
(SD: 0.03, min: 0.839, max: 1.0), 0.937 (SD: 0.04, min: 0.847, 
max: 1.0), and 0.957 (SD: 0.02, min: 0.904, max: 0.986) for 
mAP, mAR, and F1-score, respectively. Note that preci-
sion in the context of seed detection referred to the ratio 
of the number of the detected true seeds (true positive) to 
the total number of the seed predictions, which may in-
clude falsely identified seeds (false positive), while recall 
referred to the ratio of the number of the detected true 
seeds (true positive) to the total number of the true seeds 
(some of these true seed may not be detected by the algo-
rithm (false negative)). The mean averaged precision and 
recall were calculated as the mean of precision and re-
call at all pre-defined thresholds (IoU) that were applied 
for the algorithm to show if a prediction was a true seed 
or not. Our algorithm provided 97.9% accuracy to pre-
dict a seed, and 6.3% chance to fail to detect a real seed. 
To investigate the accuracy of naked-eye counting, four 
clinicians were requested to carry out the task. A  stop-
watch was used to record the counting time. There were 
4,114 seeds of all 48 cases, and this number was from the 
seed contours and referred to as the ground truth. The 
counting error from the four clinicians was within 0.25% 
(a variation about 10 seeds in the counting existed among 
the four clinicians due to different interpretation of over-
lapped seeds). However, the time spent to count one seed 
was about 1 second, while it took the algorithm less than 
1 second to count all seeds in one image. 

To better explain the results, we demonstrated three 
cases (Figure 4), which corresponded to case #35, #30, 
and #38 in Figure 3. For case #35 (mAP, 0.986, mAR, 
0.986), all but two of the implanted seeds were correctly 
identified by the algorithm: one was false positive (purple 
arrow), and one was false negative (white arrow). In case 
#30, most of the seeds were correctly identified; howev-
er, there were some overlapping seeds unaccounted, as 
shown by white arrows (false negative) and two corner 
residues from cutting of the edge of the field of view that 
were mistakenly accounted as seeds (false positive). For 
this case, the mAP was high (0.987) but the mAR was low 
(0.868). In contrast, for case #38, the mAP was low (0.839), 

Fig. 2. Results of mean average recall (mAR) and precision 
(mAP) for all cases using leave-one-out cross-validation

Fig. 3. F-score results for all cases using leave-one-out 
cross-validation
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while the mAR was high (0.979). There were seven false 
positive seeds resulting from misinterpretation by the al-
gorithm due to the edge of TRUS probe. One false nega-
tive seed almost overlapped with the other, and was not 
accounted for. 

Discussion 
We could see that the method could accurately detect 

well-separated seeds; however, several limitations were 
observed in the study. First, as we know, small object de-
tection has been a challenging task in the field of artificial 
intelligence. Part of the challenge is due to the limited 
amount of information representing small crowded ob-
jects and overlapping with other objects [13-16]. This was 
the case in our work, as the seeds in fluoroscopy images 
were small objects and often overlapped partially with 
other seeds, forming a  cluster of seeds. Misinterpreta-
tions of overlapping seeds or a  cluster of seeds lead to 
a decrease in accuracy due to false negative detections. 
The issue of seed overlapping could be alleviated by tak-
ing multiple fluoroscopy images at different acquisition 
angles. However, in a time-constrained operating room, 
the position of C-ARM device is not usually moved af-
ter initial setup. Actually, it is the anterior-to-posterior 
direction, at which a fluoroscopy image is taken in clini-
cal practice. Moreover, the overlapped seeds can still be 
seen in the image taken at a different acquisition angle. 
Besides the challenge of detecting overlapped seeds, the 
second difficulty come from distinguishing small non-
seed artificial objects and the edges of the TRUS probe 
from multiple seeds. There are cases that the probe is in-
side the patient while the fluoroscopy image is taken, for 
example, when the physicians want to know the location 
of the probe relative to the patient’s anatomy. The probe 
in the fluoroscopy image is shown as two parallel lines. 
Non-uniformity of the image intensity of the lines can 
lead the algorithm to falsely identify the probe edges as 
multiple seeds. The third limitation may come from the 
pre-trained model parameters in the library (PyTorch). 
The pre-trained model is based on training of COCO and 
PASCAL VOC [17] datasets, and these datasets contain 
more medium or big objects than small objects, which 

may cause an imbalance data of different sizes, and there-
fore result in potentially biasing the detection model to 
focus more on large objects rather than small objects, as 
encountered in our work. 

Techniques have been seen in the literature to im-
prove the accuracy of small object detection using R-CNN 
[5]. One commonly used technique is the augmentation. 
In this method, small objects in the images are oversam-
pled and augmented by copy-pasting many times. Each 
seed in our study usually occupied several tens of pixels 
in the image. Increasing the image resolution can increase 
the number of pixels for each seed; however, it increas-
es the computational time. It is uncertain if the method 
could improve the accuracy of detecting the overlapping 
or clustered seeds, as all the seed dimensions are pro-
portionally increased. The other ways of artificially aug-
menting dataset include rotation of images with different 
angles and copy-pasting small objects to different loca-
tions in the image. Specific to our project, the augmenta-
tion could be carried out in our future work by copying 
the instance of overlapping seeds, rotating by different 
angles, and re-locating to other locations. However, the 
simple way without staining the original image is to in-
crease the size of training dataset. There were only 48 cas-
es of 125I PSI used in the current study. In future work, 
we will include more cases and build a database of 103Pd 
PSI. With a  larger dataset, more accurate results would 
be produced, which could better validate our results. The 
other technique that has also been used to improve the 
accuracy of small object detection is using different net-
works (ResNet-101-FPN and VGG-16) for backbones and 
feature extractors. Our future work will further investi-
gate this approach. 

With limited datasets for training and intricate diffi-
culties from seed overlapping, it is challenging to elim-
inate the false negative or the false positive detections 
for the implanted seeds in the fluoroscopy images. By in-
cluding more datasets for training in the future, it is pos-
sible to achieve higher accuracy in seed counting. In clin-
ical PSI procedures, since the seeds are radioactive, every 
seed must be counted according to regulation’s require-
ment for radiation safety. Given the complex variation 
in generating the fluoroscopy image for each individual 

Fig. 4. Examples of detected seeds in bounding boxes for three cases (case #35, 30, and 38). The purple arrow points to false 
positive seeds, and the white arrow shows false negative seeds
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patient, it may be impractical for an artificial intelligence 
numerical model to produce 100% accuracy for all situ-
ations. Therefore, building a  human-assisted system is 
necessary. As we can imagine, counting the number of 
implanted seeds (50-100 seeds) by naked eyes is very 
time-consuming and error-prone. A human-assisted sys-
tem can make the counting much faster and easier in the 
proposed process as the following. The implanted seeds 
are initially identified by a  deep learning model, and 
a  table is shown up to list the identified bounding box-
es that have low confidence scores. Detections with low 
confidence scores are potentially false negative or false 
positive. Clinicians go through these bounding boxes 
with a user interface to identify real seeds. A deployment 
of the model to certified mobile cell phones could make 
the counting process further easier by taking the image 
from a C-ARM screen directly with a phone. We consider 
building such a system in the future. 

Conclusions 
In the present study, a  faster R-CNN deep learning 

library was applied to automatically detect implanted ra-
dioactive seeds in the fluoroscopy images from PSI pro-
cedure. The method achieved a good accuracy, with an 
averaged mean precision of 0.979, averaged mean recall 
of 0.937, and F1-score of 0.957. The achieved accuracy 
provides the potential for the application of the method 
to count the number of seeds implanted in patients in the 
operating room faster and easier.
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