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Abstract 
Purpose: Delineation of organs at risk (OARs) represents a crucial step for both tailored delivery of radiation doses 

and prevention of radiation-induced toxicity in brachytherapy. Due to lack of studies on auto-segmentation methods 
in head and neck cancers, our study proposed a deep learning-based two-step approach for auto-segmentation of or-
gans at risk in parotid carcinoma brachytherapy. 

Material and methods: Computed tomography images of 200 patients with parotid gland carcinoma were used 
to train and evaluate our in-house developed two-step 3D nnU-Net-based model for OARs auto-segmentation. OARs 
during brachytherapy were defined as the auricula, condyle process, skin, mastoid process, external auditory canal, 
and mandibular ramus. Auto-segmentation results were compared to those of manual segmentation by expert oncolo-
gists. Accuracy was quantitatively evaluated in terms of dice similarity coefficient (DSC), Jaccard index, 95th-percentile 
Hausdorff distance (95HD), and precision and recall. Qualitative evaluation of auto-segmentation results was also 
performed. 

Results: The mean DSC values of each OAR were 0.88, 0.91, 0.75, 0.89, 0.74, and 0.93, respectively, indicating close 
resemblance of auto-segmentation results to those of manual contouring. In addition, auto-segmentation could be 
completed within a minute, as compared with manual segmentation, which required over 20 minutes. All generated 
results were deemed clinically acceptable. 

Conclusions: Our proposed deep learning-based two-step OARs auto-segmentation model demonstrated high 
efficiency and good agreement with gold standard manual contours. Thereby, this novel approach carries the potential 
in expediting the treatment planning process of brachytherapy for parotid gland cancers, while allowing for more ac-
curate radiation delivery to minimize toxicity. 
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Purpose 
Accurate delineation of both target organs and organs 

at risk (OARs) is crucial for the planning of modern radio-
therapy [1]. As a form of precision treatment, low-dose-
rate (LDR) brachytherapy delivers high radiation doses 
to the anatomy of each target volume, while sparing sur-
rounding normal tissues. Interstitial brachytherapy after 
parotid cancer surgical resection, can be used to deliver 
high-conformity radiation doses to target volumes, and it 

provides a high local control rate with few side effects [2]. 
OARs segmentation is currently manually performed, 
and involves screening of hundreds of computed tomo
graphy (CT) imaging slices. As such, this process is not 
only tedious and time-consuming, but is also prone to 
subjectivity and inter-operator variability. 

Automated segmentation has been developed to 
address these challenges. Various deep learning-based 
systems methods have been derived from previous statis-
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tical models or atlas-based models [3]; however, the pres-
ence of post-surgical adhesions, which can compromise 
soft tissue boundaries on imaging, remains a challenge in 
adjuvant radiotherapy. Currently available algorithm-de-
rived volumetric segmentation techniques tend to require 
significant manual editing, and fail to provide significant 
improvement in clinical workflow [4]. Advancements in 
deep learning technologies in medical image classifica-
tion and segmentation have gained substantial attraction 
and success in recent years, particularly convolutional 
neural networks (CNN) [5]. Multiple CNN-based models 
have been proposed in the past decade, such as fully con-
volution networks (FCNs) [6], DeepLab system [7], and 
U-net [8]. 

With the adoption of symmetrical expansion paths 
and skip connections, U-net fuses low- and high-level 
feature maps, and effectively overcomes imaging noise 
and blurred boundaries. U-net and its’ variants have thus 
been widely used for segmentation during medical im-
aging, especially in the field of radiotherapy. Recently, 
the nnU-Net method, which builds on the architecture of 
U-net, has been considered the best baseline deep learn-
ing-based model for medical segmentation, owing to its’ 
automaticity in all stages, from pre- to post-processing of 
each given image dataset, removing the need for man-
ual tuning [9]. Due to the scarcity of studies on the use 
of automated segmentation models in parotid cancer, we 
thereby proposed a  two-step 3D nnU-Net-based auto-
mated OARs segmentation model for brachytherapy in 
parotid gland cancer, and evaluated its accuracy by com-
parison with gold standard expert manual segmentation.

Material and methods 
Clinical imaging data 

A  total of 200 patients with parotid gland carcino-
ma, who underwent surgical resection followed by ad-
juvant iodine-125 (125I) seed with surface radioactivity of  
18.5 MBq and air-kerma strength of 0.635 μGy· m2· h−1 
per seed (model 6711; Beijing Atom and High Technique 
Industries Inc., Beijing, China; t1/2, 59.6 days; energy 
level, 27.4-31.4 keV; tissue penetration capacity, 1.7 cm) 
with activity of 22.2 to 29.6 MBq (range, 0.6-0.8 mCi) im-
plantation brachytherapy [10] at the Peking University 
Stomatology Hospital between 2017 and 2021 were in-
cluded in the study. For each patient, treatment planning 
was performed using a brachytherapy planning system 
(BTPS; Beijing Astro Technology Ltd. Co., Beijing, China), 
based on CT images taken within 4 weeks post-surgery. 

Images were acquired in 512 × 512 matrix size and 
2 mm slice thickness. All images were cut in the sagit-
tal position, and only data on the side of cancer were re-
tained for the study. Six OARs were defined, including 
the auricula, condyle process, skin, mastoid process, ex-
ternal auditory canal, and mandibular ramus. It should 
be noted that some OARs in parotid brachytherapy have 
a large range, such as the skin and mandible. Neverthe-
less, collateral damage to normal tissues in brachythera-
py is likely to be confined to the vicinity of clinical target 
volume (CTV), it was not possible to outline the whole 

organ. Regions of interest (ROIs) were limited to 17 mm 
from the residual parotid tissues, in accordance with in-
herent irradiation range of 125I seeds. Collected datasets 
were randomly divided into a training set of 70% of cases 
(n = 140) to establish and train the proposed model, a val-
idation set of 15% cases (n = 30) for held-out validation, 
and a test set of 15% of cases (n = 30) to evaluate the per-
formance of the final prediction models. 

Two-stage diagnostic labeling was performed by two 
experienced radiation oncologists (reader 1 and reader 4, 
with 5 years’ and 10 years’ experience in parotid cancer 
treatment planning, respectively) in consensus. Prior to 
this, training was performed on five cases unrelated to 
the study to allow for discussion of segmentation proce-
dures and development of consensus criteria. 

In the first stage, the radiologist with 5 years of experi-
ence manually labeled 6 organs using an open-source soft-
ware package (ITK-SNAP version 3.4.0; http://www.itk-
snap.org) [11]. All 200 patients’ OARs were re-delineated 
for the purpose of this research. In the second stage, con-
tour sets were reviewed by a senior radiologist and mod-
ified as necessary, to maintain consistency. Manual delin-
eation were used as gold standard for training and testing. 

The present study was approved by the Institutional 
Review Board. All image data were obtained retrospec-
tively, and were anonymized and de-identified prior to 
analysis. 

Deep learning two-step segmentation model 

The architecture of 3D nnU-Net model is shown in 
Figure 1. As an out-of-the-box tool, pre-processing strat-
egies and training hyperparameters were automatically 
adapted. The model was comprised of an encoder and 
decoder path, with skip connections in between. Both 
paths consisted of repeated blocks of two convolution-
al layers, each followed by an adaptive layer-instance 
normalization layer and a leaky rectified linear units. In 
the encoder, down-sampling was done by strode convo-
lution, while in the decoder path, up-sampling was per-
formed via transposed convolution. In the decoder, fea-
ture maps after each convolutional block were created by 
convolution with a 1 × 1 × 1 kernel, and SoftMax function 
was applied to the output for deep supervision. Initial 
feature maps were set to 32, and were doubled during 
down-sampling to a maximum of 320. 

A  two-step approach was designed to allow for 
coarse-to-fine segmentation, as shown in Figure 2. The 
first model was trained to segment the parotid gland 
only, while the second was trained to segment the pre-de-
fined ROIs. As mentioned, the input of the second model 
was created by expanding 17 mm from the position of 
the segmented parotid gland identified in the first model. 
The test dataset was used as the input of each model. 

A total of 170 patients’ CT scans were used for training 
and validation. Based on the self-configurable strategy of 
nnU-Net, all images were automatically pre-processed 
by re-sampling, normalization, data augmentation (mir-
roring, rotation, and scaling), and cropping prior to net-
work input. Input volumes of each model were resized to  
56 × 256 × 128 and 32 × 256 × 160 pixels, respectively. 
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Fig. 1. Architecture of 3D nnU-Net-based model
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Loss and training details 

The model was trained with deep supervision [12]. 
For each output, a corresponding down-sampled ground-
truth segmentation mask was used for loss computation. 
Loss (L) was defined as follows (Equation 1): 

L = ∑        · Ld
d = 1

1
2d–1

5

Ld = ad· Ldice + bd· Lce      (1) 

where αd and βd are the weight coefficients, and were as-
signed as 1 and 1; and where Ld represents the loss of d-th 
layer in deep supervision, d∈ (1,2,3,4,5). 

Loss function (Ld) was defined as the sum of dice 
loss (Ldice) [13] and cross entropy loss (Lce) [14] as follows 
(Equation 2): 

Ldice = – 2
N

 ∑
n∈N

∑
i∈I

yn
i pn

i

∑ ∑
i∈I i∈I

yn
i  + pn

i

 
Lce = 1

I
 ∑ – [pi · ln(yi) + (l – pi) · ln(1–yi)]
i∈I

      (2) 

where yn
i and pn

i represent the ground truth segmentation 
and the predicted probability of ith pixel of nth class, re-
spectively. The pixel and class numbers were denoted as 
I and N, respectively. 

Training of the model was performed using stochastic 
gradient descent (SGD) optimizer with Nesterov momen-
tum. Initial learning rate was set at 1e-3, and batch size 
was set to 2, with each epoch defined as 250 training iter-
ations. Maximum epoch was set to 1,000. The proposed 
model was implemented on a single GeForce RTX 3090 
(NVIDIA) graphics processing unit of 24 GB. Codes were 
developed with Python version 3.7.9, while the model 
was developed using PyTorch version 1.8.0. 

Quantitative evaluation metrics 

The accuracy of the model was qualitatively evaluated 
against gold standard manual contours in terms of dice 
similarity coefficient (DSC), Jaccard index, 95th-percentile 
Hausdorff distance (95HD), and precision and recall. 

DSC describes the degree of volumetric overlap be-
tween ground truth (A) and deep learning-based seg-
mentation (B) (Equation 3). Values 0 and 1 corresponded 
to no and complete overlap, respectively [15]. 

DSC(A, B) = 2|A∩B|
|A|+|B|

      (3) 

The Jaccard index is an algorithm performance metric 
for measuring similarity between datasets. It was defined 
as the cardinality of intersection divided by the cardinali-
ty of union of the A and B sets (Equation 4) [16]. 

J(A, B) = |A∩B|
|A∪B|

      (4) 

Hausdorff distance was a distance-based metric, and 
measures dissimilarity between two datasets [17]. It was 
defined as the largest value of all distances from the point 
in one set to the closest point in the other. Lower HD val-

ues imply higher segmentation accuracy. 95HD was ap-
plied in our study because of high susceptibility of HD to 
noise and local outliers. 

The precision and recall were based on true positives 
(TP), false negatives (FN), and false positives (FP) [18]. 

The precision was defined as the ratio between true 
positives and the total number of possible positives (true 
positives + false negatives). The precision rate was pre-
sented in Equation (5). 

Precision = TP
TP + FP       (5) 

The recall was defined as the ratio of true positives in 
the data to true positives and false negatives. The recall 
rate was represented in Equation (6). 

Recall = TP
TP + FN      (6) 

Data were verified with the Kolmogorov-Smirnov test 
to determine whether they were approximately normal-
ly distributed. For normally distributed data, the paired 
Student’s t-test was used to compare the two-step and 
segmentation-only models. For non-normally distributed 
data, the Wilcoxon test was used. Statistical significance 
was set at two-tailed p < 0.05. 

Subjective validation 

For qualitative analysis, all tested datasets were blindly 
reviewed by two senior oncologists with > 20 years of ex-
perience. Segmentation quality was graded using a 4-point 
scoring system, with 0 points meaning severe defect, pres-
ence of large and obvious errors; 1 point meaning moder-
ate defect, presence of minor correctable errors; 2 points 
meaning mild defect, presence of clinically insignificant 
errors; and 3 points meaning precise, no editing required. 

Dosimetric evaluation 

To assess dosimetric impact of our proposed model, 
brachytherapy plans on all test cases were made. Then, 
dose-volume histogram (DVH) of OARs between two-
step model and manual expert segmentation was cal-
culated. Difference of Dmean was determined to access 
dosimetric effects of each segmentation method. OARs 
dosimetric metrics were analyzed using Spearman’s rank 
tests (p = 0.05). 

Results 
Accuracy of residual parotid tissue segmentation 

The accuracy was demonstrated in the first segmen-
tation stage of our proposed model for residual parotid 
tissue, with DSC of the validation dataset reaching 0.87. 

Accuracy of OARs’ segmentation 

Figure 3 show the best and challenging scenarios ob-
tained with manual expert segmentation (B and F), the 
segmentation-only model (C and G), and the proposed 
two-step segmentation model (D and H) in two repre-
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sentative patients. Successful delineation of the six OARs 
was observed, with good visual agreement across all  
3 modalities. 

Statistical results of the two-step segmentation and 
segmentation-only models are presented in Table 1. Low-
er 95 HD and higher DSC values were observed in our 
proposed model. 

Mean DSC values of > 0.80 were observed in all OARs, 
except for the skin and external auditory canal, suggest-
ing the reliability and applicability of our proposed mod-
el for the automated segmentation of parotid cancers. 
Among all structures, the best segmentation results were 
obtained for the mandibular ramus and condyle process-
es, with mean DSC values of 93.19% and 91.48%, respec-
tively, and relatively high contrast and clear boundaries 
were observed in post-operative CT images. 

Quantitative data between the two-step and segmen-
tation-only models were compared using the paired Stu-
dent’s t-test or Wilcoxon test. Statistical significance was 
set at two-tailed p < 0.05. It can be seen from the data in 
Table 1 that there were differences in the statistical data 
between the two-step and segmentation-only models, 
and most of the data comparisons were statistically sig-
nificant (p < 0.05). 

Oncologist evaluation 

The results of the qualitative analysis are demonstrat-
ed in Table 2. Automated delineation using the two-step 
model was deemed clinically acceptable by the two se-
nior oncologists. 

Segmentation time 

The average time for OARs segmentation with our 
two-step model was 50.90 s, of which 4.47 s were spent 

on slice classification. In contrast, the expert manual seg-
mentation required over 20 minutes. 

Dosimetric impact 

We performed experiments to examine the impact of 
contours obtained with the proposed automatic segmen-
tation method. Figure 4 shows DVHs for all six OARs 
of an exemplary patient. We calculated the difference of 
Dmean on OARs segmented from manual segmentation 
by expert oncologists and two-step automated segmen-
tation approach for all 30 plans. Group differences were 
assessed by calculating the dose, with a mean, standard 
deviation, and corresponding p-value. The mean and 
standard deviation of dose variables computed over these 
two groups are presented in Table 3, along with the corre-
sponding p-values. Dosimetric metrics showed p-values 
larger than 0.05, indicating for all OARs that there were 
no obvious differences between the dosimetric metrics of 
these two segmentation methods. 

Comparison with other methods 

We compared our proposed method with several 
deep learning-based 3D segmentation methods, includ-
ing 3D U-Net [19], V-Net [20], and nnU-Net (segmen-
tation-only model). To ensure objectivity, we used the 
same training framework for the appeal method as our 
proposed method, including the same data augmenta-
tion, pre-processing, post-processing, etc. The data were 
analyzed in terms of DSC, Jaccard index, 95 HD, and pre-
cision and recall. 

From Table 1, it can be seen that the two-step ap-
proach we proposed was better than the others method 
in each indicator. Among them, for the skin with a large 
range, our method was significantly superior to the oth-

Fig. 3. The best and challenging scenarios in the model. Figures (A-D) show the best scenario. A) A slice obtained from a 3D 
parotid CT image; B) Result from manual expert segmentation; C) Segmentation-only model; D) The two-step segmentation 
model. Figures (E, F) show the challenging scenario. E) A slice obtained from another 3D parotid CT image; F) Result from 
manual expert segmentation; G) Segmentation-only model; H) Two-step segmentation model
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ers, 7% higher than 3D Unet and 2% higher than nnU-Net 
of the one-step method with mean DSC values. 

Discussion 
The parotid gland is considered an important organ at 

risk in head and neck cancer and whole brain radiother-
apy [21]; however, studies on OARs in brachytherapy for 
parotid gland cancer are currently lacking. OARs for pa-
rotid cancer patients with external beam radiation thera-
py have included the contralateral parotid, eyes, lenses, 
optic nerve, and spinal cord [22]. Owing to the steep gra-
dient in brachytherapy, small size of OARs and similar 
density of surrounding tissues render segmentation diffi-
cult. Moreover, tissue adhesions and subsequent blurring 
of soft tissue boundaries following surgical resection can 
further challenge the segmentation process for adjuvant 
brachytherapy in parotid gland cancer. 

The present work proposed a  deep learning-based 
two-step automated organs at risk segmentation tech-
nique, and evaluated its performance for brachytherapy 
planning in parotid gland cancer. Six OARs were identi-
fied, including the auricula, condyle process, skin, mas-
toid process, external auditory canal, and mandibular ra-
mus. Accurate automated segmentation results, with close 
agreement to those of gold standard manual segmenta-
tion, were observed, indicating mean DSC values of 0.88,  
0.91, 0.74, 0.89, 0.74, and 0.93, respectively. The entire seg-
mentation process with our model took approximately 
50.90 s, while manual segmentation performed by experi-
enced oncologists required over 20 minutes. The potential 
of our model in improving the efficiency of the segmenta-
tion process was thus shown. While DSC is a widely ad-
opted metric in assessing segmentation quality, it is high-
ly sensitive to the size of evaluated item [23]. For adequate 
statistical evaluation, qualitative validation by experts in 
this field was considered, who subsequently deemed the 
two-step automated segmentation approach clinically ac-
ceptable. Therefore, our overall results demonstrated the 
potential of our proposed model as an accurate and effi-
cient segmentation method in clinical practice. 

The ranking in descending order of the segmentation 
results of the six OARs include the mandibular ramus, 
condyle process, mastoid process, auricula, external au-
ditory canal, and skin, which seemed to be related to the 
degree of complexity and variation. The mandibular ra-
mus and condyle process have relatively simple shapes, 
and clean boundaries and strong contrast allow an easy 
segmentation from image background. By contrast, au-
tomatic segmentation is challenging in external auditory 
canal and skin segmentation due to the complex back-
ground texture and large variation in size, shape, and 
intensity. Occasionally, it is difficult to distinguish the 
boundaries between residual gland and OARs, depend-
ing on initial tumor extent and gross residual diseases. 
Blurred and low-contrast surgical areas may lead to 
fuzzy segmentation from automatic segmentation mod-
els. In these cases, OARs segmented by the model had 
relatively poor consistency with those of the radiation on-
cologists; however, as intra- and inter-observer variabili-
ty in the quantification of the same structure occur, it was 
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Table 2. The mean results of the clinical acceptability analysis of the organs at risk (OARs)

OARs Auricula Condyle  
process

Skin Mastoid  
process

External  
auditory canal

Mandibular 
ramus

Oncologist 1 2.63 2.74 2.55 2.84 2.47 2.93

Oncologist 2 2.69 2.78 2.41 2.86 2.41 2.88

A score of ≥ 2 was defined as clinically acceptable.

necessary to conduct subjective validation in addition to 
quantitative evaluation. Numerous examples, in which 
cases with lower quantitative agreement were still judged 
as clinically acceptable. 

The high variability in architecture and morphology 
of the parotid gland post-operation often results in het-
erogeneity in the range of ROIs among different indi-
viduals, which can be a major challenge in manual seg-
mentation. As such, automated segmentation methods 
have received great attraction to enable personalized ROI 
contouring. We achieved a two-step approach using deep 
learning, which focused on ROI, and obtained greater ac-
curacy even though the salient region was small when 
compared with the method that extracted global features 
of the entire image for estimating the overall quality. As 
the irradiation only affects a very localized area around 
the radiation sources in brachytherapy [24], delineation 
was not necessary for tissues outside the region of inter-
est, which increased noise and artifacts, and potentially 
contributed to the most uncertainty in radiotherapy plan-
ning [25]. Although the region of interest was delimit-
ed at 1.7 cm edge of the post-operative residual parotid 
gland, radiation oncologists who delineate OARs tend to 

expand the scope to avoid potential omission. If the ROI 
is labeled accurately on the network method, the accura-
cy will be reflected in the segmentation. Moreover, as the 
original CT images contains a large background that car-
ries irrelevant, noisy, and redundant features, this two-
step segmentation step method not only improves the 
segmentation performance by removing the irrelevant 
(or less relevant) features, but also reduces the computa-
tional complexity by decreasing the spatial size of input 

Table 3. The mean and standard deviation (SD) 
of Dmin differences and p-value calculated with 
organs at risk segmented by manual expert and 
two-step segmentation model for all 30 plans

Mean (Gy) SD (Gy) P-value

Auricula 5.52 12.14 0.266

Condyle process 2.69 4.31 0.547

Skin 9.71 17.55 0.062

Mastoid process 3.37 3.81 0.054

External auditory canal 8.92 17.10 0.120

Mandibular ramus 2.53 3.34 0.619

Fig. 4. Dose distribution in one patient with (A) two-step segmentation model contours and (B) corresponding DVHs. Dose 
distribution in the same patient with (C) manual expert segmentation contours and (D) corresponding DVHs

A B

C D

Skin Auricula Condyle process Mastoid process External auditory canal Mandibular ramus 
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volume. In this study, ROIs were limited to 17 mm from 
the residual parotid tissues, in accordance with the pene-
tration depth of selected 125I seed of 17 mm. Higher con-
sistency can be achieved by selecting smaller ROIs. 

Due to its influence on tumor control and the risk of 
radiation-induced toxicity, OARs’ contouring is crucial 
for radiotherapy planning. Current gold standard manual 
segmentation is, however, laborious and time-consuming 
[26]. Increasing attention has been placed on the use of 
deep learning-assisted models for automated segmenta-
tion in brachytherapy [27, 28]; however, to our knowledge, 
such models have not been utilized in the head and neck 
region. Precise delineation and prevention of severe radio-
therapy-related complications are particularly crucial in 
head and neck cancers, given the complexity of anatomical 
structures and clinical emphasis on maintaining aesthet-
ics [29]. At present, the majority of research on automated 
delineation techniques in the head and neck region has 
revolved around external radiation therapy. In a  study 
by van Dijk et al., a  2D U-Net network model using CT 
images of 589 patients was utilized for the segmentation 
of the parotid gland, which obtained DSC values of 0.81 
±0.08 [30]. Dai et al. proposed a deep learning-based head 
and neck multi-organ segmentation method using mag-
netic resonance images of 60 patients, and obtained DSC 
values of 0.85 ±0.06 and 0.86 ±0.05 in the left and the right 
parotid glands, respectively [31]. Our results were in line 
with those of the aforementioned studies. In the current 
study, surrounding tissues, such as the mandible and skin, 
were delineated as OARs, but there is a scarcity of similar 
research data entries for these structures for comparison. 

There were several limitations in our study. The six 
OARs included were selected based on our institution-
al protocol for parotid brachytherapy, which overlooked 
other organs, including the masseter and sternocleido-
mastoid muscle. Therefore, future research with inclu-
sion of these organs is warranted. Due to limited com-
puting power, images with 2 mm slice thickness were 
acquired. Given that images with a lower slice thickness 
would provide more and better information, it is possi-
ble to acquire better segmentation results using thinner 
CT slices; however, this will lengthen the segmentation 
time. We will consider this point in a follow-up research. 
Thirdly, another potential limitation is that this was a sin-
gle-center study, which makes the accuracy of the cases 
out of our patients’ data open to question. 

Conclusions 
The high variability in architecture and morphology 

of the parotid gland post-operation often results in het-
erogeneity in the range of ROIs across different individu-
als, which can be a major challenge in manual segmenta-
tion. With deep learning-based segmentation techniques, 
the ROI was the first extracted and fed into the system, 
allowing for a focus on anatomically relevant regions to 
achieve segmentation of greater accuracy in our proposed 
model. This approach thereby carries the potential in ex-
pediting the treatment planning process of brachythera-
py for parotid gland cancers. 
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