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Abstract

Purpose: This study presents the steps and criteria involved in the series of image registrations used clinically dur-
ing the planning and dose delivery of focal high dose-rate (HDR) brachytherapy of the prostate.

Material and methods: Three imaging modalities - Magnetic Resonance Imaging (MRI), Magnetic Resonance Spec-
troscopic Imaging (MRSI), and Computed Tomography (CT) - were used at different steps during the process. MRSI
is used for identification of dominant intraprosatic lesions (DIL). A series of rigid and nonrigid transformations were
applied to the data to correct for endorectal-coil-induced deformations and for alignment with the planning CT. Mutu-
al information was calculated as a morphing metric. An inverse planning optimization algorithm was applied to boost
dose to the DIL while providing protection to the urethra, penile bulb, rectum, and bladder. Six prostate cancer patients
were treated using this protocol.

Results: The morphing algorithm successfully modeled the probe-induced prostatic distortion. Mutual information
calculated between the morphed images and images acquired without the endorectal probe showed a significant
(p = 0.0071) increase to that calculated between the unmorphed images and images acquired without the endorectal
probe. Both mutual information and visual inspection serve as effective diagnostics of image morphing. The entire pro-

cedure adds less than thirty minutes to the treatment planning.
Conclusion: This work demonstrates the utility of image transformations and registrations to HDR brachytherapy

of prostate cancer.
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Purpose

Studies have shown that greater control of localized pro-
static tumors is directly correlated with radiation doses
delivered [1-3]. However, excessive dose to the normal
tissues causes side effects [4-6]. High dose rate (HDR)
brachytherapy can provide a focal dose escalation, and
prior studies have shown that combined external beam
radiation therapy (EBRT) and HDR brachytherapy yields
favorable outcomes, particularly in patients with locally
advanced disease [7-9]. We have recently initiated an HDR
brachytherapy clinical protocol in which a combination of
magnetic resonance imaging (MRI) and magnetic reso-
nance spectroscopic imaging (MRSI) is used to define dom-
inant intraprostatic lesions (DIL). This information is used
to perform dose escalation of the DIL without compro-
mising the dose coverage of the prostate nor the protection
to the urethra, rectum, and bladder. There are two diffi-
culties, however, inherent in this approach. The first is the
merging of information from the staging MRI/MRSI exam
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with the anatomic computed tomography (CT) exam
required for treatment planning; the second is the capaci-
ty of the treatment modality/treatment planning system
to deliver radiation doses in a precise fashion.

The combined MRI/MRSI exam has been shown to be
an effective method of detecting and localizing intrapro-
static lesions [10-13]. The high sensitivity and specificity
yielded by this exam has demonstrated great utility in focal
treatment via '2°I brachytherapy implants [14] and com-
bined HDR brachytherapy + EBRT [15,16].

However, since the endorectal probe used for MRI/
MRSI acquisition can induce significant prostatic com-
pression and deformation, a non-rigid transformation is
required to accurately register the probe-in MRSI data with
the probe-out CT images used for treatment planning. To
model this deformation, prior studies have implemented
finite-element based biomechanical simulations [17,18],
elastic spline deformation [19], thin plate spline deforma-
tion [19-23], symmetric forces algorithms [24], Newton-
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Ralphson algorithms [25], and in-plane linear scaling
assuming constant volume [14]. Kim et al. [26] showed that
the deformation induced by the inflatable endorectal coil
is negligible in the z (superior/inferior) dimension since
the induced distortions are less than the axial MRI slice
thickness of 3 mm. The same study also showed that the
coil induces a non-negligible rotation about the x (right/
left) axis. These findings suggest that an x axis rotation fol-
lowed by an axial in-plane non-rigid deformation suffi-
ciently models the prostatic deformation induced by the
endorectal coil.

In this study, we developed and implemented a new
method combining rigid translations (for centroid align-
ment), rotations (to model the x axis rotation), and an in-
plane non-rigid control-point based morphing method that
utilizes a local weighted-mean transformation [27]. Addi-
tionally, we present the steps and criteria involved in the
series of image registrations used clinically during the plan-
ning of the dose delivery process.

Material and methods

For each patient enrolled in the study, a pre-therapy
staging MRI/MRSI exam using an endorectal probe (i.e.
probe in, or PI) was acquired. The MRI and MRSI images
were registered so that the MRSI-defined DIL could be
delineated on the anatomic MRI volume. An axial MRI
series with the endorectal probe not inserted (i.e. probe out,
or MRI-PO) was also acquired. Pairs of points at corre-
sponding anatomic features on the MRI-PI and MRI-PO
series were chosen and used to determine the PI-PO trans-
formation. This transformation algorithm was used to cor-
relate spectroscopic data (MRSI-PI) to the MRI-PO data.
Mutual information was calculated to measure warping
accuracy. On the HDR brachytherapy treatment day, the
planning CT and the MRSI-PO were imported into the
brachytherapy planning system and registered to each
other. The prostate anatomy alone was used to guide the
fusion. The target and organs at risk were delineated using
the CT, while the DIL was contoured using spectroscopic
information from the MRSI-PO. Catheters were then dig-
itized, and the plan was optimized using the Inverse Plan-
ning by Simulated Annealing (IPSA) algorithm [16]. The
optimization was instructed to provide a clinically effec-
tive dose to the entire prostate while concurrently deliv-
ering a dose escalation to the DILs. This was done without
increasing the dose to surrounding non-cancerous tissues.
Once the plan was approved, the dose for the first fraction
was delivered.

Subjects

Six patients were scanned and subsequently treated
with this protocol. Their age ranged from 44 to 80 years
old (mean 61). All patients had biopsy-proven Gleason
3 + 3 disease, and five of the six subjects showed Gleason
3 + 4 pattern in histological analysis. The mean PSA meas-
urement for all subjects was 8.8 ng/mL (ranging from
4.3 ng/mL to 19.5 ng/mL). Written informed consent was
obtained for all subjects following a protocol approved by
the UCSF Committee of Human Research.

Identification of DIL with MRS and MRI

MR imaging was acquired with a GE 3T SIGNA scan-
ner (GE Medical Systems, Waukesha, WI) using body-coil
excitation. The GE 8-channel pelvic phased array and
Medrad endorectal coil (Medrad, Pittsburgh, PA) were
used for signal reception. Axial T,-weighted images were
acquired with TR/TE = 600/12. Fast spin echo T,-weight-
ed images were acquired (TR/TE = 6000/102, 14 cm FOV,
256 x 256 matrix) in the axial, sagittal, and coronal planes.
Images and spectroscopic data were first acquired with the
endorectal probe inserted. The probe was then removed,
and an additional sagittal locator and an axial FSE T, image
data set were then acquired using the pelvic phased array
for signal reception.

Spectroscopic data was acquired using a specialized
prostate 3D MRSI sequence [28,29] with a 12 x 8 x 8 acqui-
sition grid, 5.4 mm isotropic resolution yielding 0.157 cm?®
voxels. Water and lipid suppression was achieved using
dual-band spectral spatial pulses [30]. Very-selective spatial
saturation (VSS) pulses were used to suppress periprostatic
lipids [31]. In each voxel 1024 points were acquired over
a 1000 Hz frequency domain. The k-space data was zero-
filled in the superior/inferior and anterior/ posterior dimen-
sions to a final array size of 12 x 16 x 16. The spectral data
was then apodized with a 3 Hz Gaussian filter, Fourier trans-
formed, baseline corrected, frequency aligned, and peaks
numerically-integrated. Numerical integration of each of the
prostate metabolite peaks (choline, creatine, and citrate) and
the suppressed water peak was performed using the known
frequency positions of each of these peaks [32].

Spectroscopic voxels were classified using the stan-
dardized scoring system proposed by Jung et al. [33] where
1 = definitely normal, 2 = probably normal, 3 = equivocal,
4 = probably abnormal, and 5 = definitely abnormal. After
the generation of these scores by a trained reader, grayscale
images of these scores were created at the MRSI resolution,
so that the suspicious voxels could be delineated by color
on the high-resolution T, volume (Fig. 1). All peripheral
zone voxels were tagged; central zone voxels were only
tagged when suspicious for malignancy.

Warping the MRSI grid
Rotation

Sagittal images acquired with and without the endorec-
tal probe were analyzed to determine the probe-induced
rotation of the prostate about the x axis. The prostatic align-
ment of each series is determined by the margin of
the peripheral zone and central zone as shown in Fig. 2.
The image volumes are rotated by the net rotation angle
0 -0 ; using tri-linear interpolation.

probein probeou

Translation

Prostatic margins were then hand-drawn on both the
axial probe-out volume and the rotated axial probe-in vo-
lume. Masks were drawn on the ten to twelve correspon-
ding slices in each volume. The centroids of the masks were
calculated, and the rotated axial probe-in volumes were
translated so their centroids line up with the centroid of
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Fig. 1. A shows a typical healthy prostate NMR spectrum, with high citrate and polyamine sigal and low choline. B shows the
spectral data of a patient enrolled in the study; elevated choline and reduced citrate in the left peripheral zone are indicative of
malignancy. C shows the suspicious regions (scores of 3, 4, and 5) delineated on the T, image. All peripheral zone voxels were
tagged; central zone voxels were only tagged when suspicious for malignancy. Only intraprostatic voxels are shown

Fig. 2. Mid-sagittal probe-in (A) and probe-out (B) images showing the prostatic rotation induced by the endorectal coil.
The angles were measured between the y axis and the peripheral zone/ central zone margin denoted by the dotted line

the probe-out volume. Defining R¢; and R as the centers
and C; and Cg, as the prostate centroids of the probe-in and
probe-out volumes respectively, the translation

AR =Rc=Reo+Co-C 1)

aligns the prostate in both volumes provided they are
acquired using the same landmark.

Non-rigid deformation

After the rotation and translations were applied, a non-
rigid deformation was used to model the prostatic defor-
mation induced by the endorectal coil. To model this defor-
mation, the probe-in and probe-out T, imaging series were
compared slice-wise. In each slice, control point pairs were
assigned to matching anatomical landmarks within the
prostate (Fig. 3). The control point locations were assigned
using the MATLAB control point selection tool. These

point pairs were then used to define a local weighted-mean
[27] PI-PO transformation. This non-rigid transformation
placed higher weighting on image regions with a higher
control point density. Therefore, the operator could apply
more control points onto the regions where higher accu-
racy was required with the registration. Examples are
regions of higher prostatic compression (the posterior
aspect) and regions of suspected malignancy. The trans-
formation was applied to the MRI-PI volume (to calculate
morphing accuracy) and to the MRSI-PI data. Finally, the
MRSI-PI data (after rotation, translation, and deformation)
were delineated on the probe-out T, volume (Fig. 4).

Evaluation

Mutual information (MI) was calculated between the
MRI-PO images and both the warped and non-warped
MRI-PI images after rotations and translations were
applied. This value was calculated similar to previous
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Fig. 3. Probe-in (A) and probe-out (B) axial slices showing control point placement. The probe-in volume is rotated by the pro-
static angle so the slices are assumed to be coplanar. Despite the lower signal-to-noise ratio on the probe-out image, numerous

landmarks are still identifiable on both images

MRS

Probe OUT

MRSI

Probe IN

Fig. 4. The left image shows the original acquisition image with the suspicious regions delineated. The center image shows the
axial probe-out volume with the rotate, translated, and warped spectral delineations. MRSI scores of 4 and 5 are delineated on

the planning CT (right)

works [34] using the histogram method. MI was calculat-
ed only in the smallest-fitting rectangular boundary around
the hand-drawn mask for each slice so that the erroneous
morphing in the extra-prostatic regions (where no control
points are placed) did not excessively sway the metric.

Target delineation for dose planning optimization
MRSI - planning CT registration

On the HDR brachytherapy treatment day, a CT scan
with 3 mm slice thickness was acquired immediately after
the patient recovered from the implant procedure. The
imaging volume included the whole of the prostate and
was limited superiorly to include the bladder and inferi-
orly to visualize all the catheters down to the perineum.
The planning CT and the MRSI-PO were imported in the
brachytherapy planning system (OncentraBrachy™, Nucle-
tron, Veenendal, the Netherlands), and a rigid body regis-
tration was obtained. The prostate anatomy alone was used
to guide the fusion, since the prostatic position can vary
with respect to extra-prostatic landmarks. Typically, 3 pair-
points were defined: two by the urethra in the base and

apex areas, and a third one more lateral to the prostate in
the median plane. Target and organs at risk were delin-
eated on the CT while the DILs were contoured on the
MRSI-PO using spectroscopic information. Catheters were
then digitized, the plan was optimized using IPSA, and the
dose for the first fraction was delivered.

Definition of volumes of interest

Clinical target volumes (prostate) and organs at risk
(urethra, bladder, rectum and bulb) were contoured on
each CT slice (Fig. 5A). The DILs - defined by MRSI vox-
el scores of 4 or 5 - were manually contoured on the CT,
but the transparency level was adjusted to make the MRS
information visible on the CT (Fig. 4 right). After the
catheters were digitized on the CT, all information request-
ed for the optimization of the dose distribution was avail-
able (Fig. 5B).

Dose optimization with inverse planning IPSA

The inverse planning optimization algorithm was then
used to increase the dose delivered to the dominant intra-
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Fig. 5. Digitized catheters and delineated target organs: rectum (brown), urinary bladder (yellow mesh), and urethra (solid
yellow). The MRSI-defined DIL is shown in pink on the left, and the right figure shows an isodose contour
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Fig. 6. Mutual information before and after applying the
described transformations to the MRI volumes for each of
the six patients in the trial. Each data point represents the
mean values of all slices in the prostate

prostatic lesions defined by MRI/MRSI while providing
the usual dose coverage of the prostate and the protection
to the urethra, rectum, bulb and bladder.

A class solution - a set of weights provided to the opti-
mization to guide it to satisfy the dose requirements of each
region of interest - was previously developed [15] for dose
escalation of a DIL defined by combined MRI/MRSI in
inverse planned HDR prostate brachytherapy. Using this
class solution, a certain level of DIL-boost was feasible for
the majority of patients under the RTOG-0321 dosimetric
requirements depending on rectal and bladder doses. The
class solution in inverse planned HDR prostate brachythe-
rapy for dose escalation of a DIL defined by combined
MRI/MRSI was an excellent starting point to explore a cus-
tomized set of dose constraints to obtain a satisfactory treat-
ment plan for each patient in the ongoing protocol.

Results and Discussion

The complete procedure was clinically integrated and
has been used for the treatment of six HDR brachythera-
py patients with MRSI information. Out of the 6 patients
scanned, the mean prostatic rotation induced by the coil
was 20 £ 9, and the mean gland volume was 27 + 14 cm?®.
Urethra, peripheral zone margins, prostate boundaries,
and various hyper/hypointense features on the images
served as effective landmarks for the MRI-PI-MRI-PO
fusion (Fig. 3). At least 12 point pairs - selected primarily
from regions with high deformation, such as the posterior
aspect of the peripheral zone, and regions of spectroscopic
abnormality - are required as inputs to the MATLAB
image transformation function. Visual inspection as well
as the computed MI (Fig. 6) served as effective diagnostics
of the morphing. MI showed 25% * 13% increase for the
six patients. A paired t-test showed this improvement to
be significant (p = 0.0071). On the day of the first fraction,
performing the MRSI-CT fusion was followed by the delin-
eation of the DIL adding less than fifteen minutes to the
entire planning process. The 3 pair-points registration pro-
cedure is considered valid when the sum of squared dis-
tances between each pair-point is less than 2 mm. A care-
ful visual inspection of the fusion in the prostate area was
also performed.

Conclusions

An MRSI to MRI/CT alignment protocol was developed
to exploit the high specificity of combined MRI/MRSI for
detecting and localizing prostate cancer within the prostate,
and to accurately transfer this information to the planning
images. This makes information about the prostate cancer
location routinely available, and allowing the use of inverse
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planning IPSA to boost dominant intraprostatic lesions
during HDR brachytherapy, while preserving the prostate
coverage and keeping the dose delivered to the organs at
risk at the same level compared to an inverse planned dose
distribution without DIL boost. Information from one
image data set could be accurately transferred to another
in the series of MRS — MRI — CT. This workflow was rou-
tinely used for the dose planning, including DIL boost. This
work illustrates the clinical benefit of image registration
tools.
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