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Sepsis is a complex syndrome of concurrent 
pathophysiological processes [1]. Its incidence is 
increasing worldwide; therefore, it is essential to 
understand its pathophysiology correctly [2–6]. 

Among the pathophysiological processes that 
develop simultaneously in sepsis, mitochondrial 
dysfunction and reactive oxygen species (ROS) pro-
duction play an essential role [7]. ROS are a group 
of molecules that include oxygen radicals and non- 
radical oxidizing agents that they are readily con-
verted into radicals [1]. In addition, there are reactive 
nitrogen species, both radical and non-radical [7, 8]. 
Several definitions of oxidative stress exist, but the 
most common one is the imbalance between ROS 
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production and the cellular antioxidant capacity, 
which potentially damages cells and destroys tis-
sues [9]. 

Another pathophysiological process described 
in sepsis is apoptosis, a highly regulated and con-
served cell death mechanism in which the cell 
self-destructs [10]. It is the usual method in which 
multicellular organisms eliminate undesired or 
superfluous cells, neutralizing the potential dam-
age caused by cells with defective DNA [10]. Seve
ral intracellular and extracellular triggers activate 
a cascade of enzymes, the final effectors of which 
are proteolytic enzymes that cleavage at the cys-
teine level [10]. Cells in which this process is trig-
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Abstract
Background: Sepsis is a syndrome of physiological, pathological, and biochemical dis-
orders with several processes co-occurring; reactive oxygen species (ROS) production 
and apoptosis are 2 of them. Succinate is a Krebs cycle intermediate that is oxydized in 
complex II of the mitochondria. This study aims to investigate the influence of succinate 
infusion on these processes. 

Methods: Sepsis was induced with caecal ligation and puncture in 200 gr Sprague 
Dawley rats. Four groups were formed with 10 animals (1 – control, 2 – succinate,  
3 – sepsis, and 4 – sepsis + succinate). 5 mmol kg–1 of intraperitoneal succinate were 
administered twice in groups 2 and 4. ROS and caspase-3 levels were measured.

Results: Overall, ROS levels (P = 0.017), but not caspase-3 levels (P = 0.89) differed sig-
nificantly between the groups. The succinate administration reduced serum ROS levels 
(group 4 vs. 3) in a statistically significant way [0.0623 units (95% CI: 0.0547-0.0699) vs. 
0.0835 (0.06-0.106), P = 0.017)], but it did not reduce serum caspase-3 levels (P = 0.39). 
There was no correlation between serum ROS levels and serum caspase-3 levels.

Conclusions: In this model, ROS levels were reduced with succinate infusion, but cas-
pase-3 levels were not. In addition, ROS levels and apoptosis levels are not correlated, 
which suggests that those processes occur at different times. 
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gered shrink, condense, and fragment, releasing 
membrane-bound apoptotic bodies that are gene
rally taken up by other cells. Also, the nucleus is 
condensed, the DNA is fragmented, and the cellular 
constituents are not released into the extracellular 
environment where they could have harmful effects 
on the surrounding cells, unlike what happens with 
cell death due to necrosis [10].

In recent years, interest in apoptosis in sepsis has 
increased. Some studies have shown that apoptosis 
levels are increased in different models of sepsis  
[11–14]. Remarkable studies have shown that apop-
tosis levels are increased in different models of sep-
sis [11–14]. In other publications, the degree of cell 
death is disproportionately low compared with the 
degree of severity of clinical or biochemical presen-
tation of multiple organ failure (MOF) [15]. On the 
other hand, some authors showed that apoptosis 
markers could be used as prognostic markers [16–18].

Succinate is a Krebs cycle intermediate that is 
oxydized in mitochondrial complex II. Different 
studies have describe that succinate improved 
oxygen consumption in septic rat muscle [19], pro-
longed survival [20], and improved liver metabolic 
profile [21]. In previous studies, it has been shown 
that succinate reduces ROS levels in septic rats [22]. 

Both pathophysiological processes (ROS produc-
tion and apoptosis) and others are the cause of the 
MOF observed in sepsis. This study aims to observe 
whether both markers are correlated and, thus, infer 
if the processes are simultaneous, what their rela-
tionship is, and, in addition, probe their association 
with organ failure.

Methods
Animals

Male Sprague Dawley rats weighing 200 g, adapt-
ed to 12 h light cycle for 7 days, and fed ad libitum at 
standard temperatures (24°C) were used. The current 
research was approved by the Institutional Animal 
Care and Use Committee (CICUAL) of the Faculty of 
Medicine of the University of Buenos Aires (EXP-UBA: 
02282/2012).

There were 4 groups, with 10 rats per group:
•• Group 1 (Control) did not undergo any interven-

tion during the study.

•• Group 2 (Succinate) intraperitoneal succinate 
was administered 2 h before the surgery (which 
occurred in groups III and IV) and 2 h before the 
acquisition of the sample.

•• Group 3 (Sepsis group) underwent caecal ligation 
and puncture, as described in the corresponding 
section. Resuscitation was performed with 20 mL 
kg–1 of NaCl 0.9%, and antibiotic treatment with cef-
triaxone (30 mg kg–1) and clindamycin (25 mg kg–1).

•• Group 4 (Sepsis + Succinate group) in which sep-
sis was induced as described and which succinate 
(5 mmol kg–1) was administered 2 h before surgery 
and 2 h before the sample taking. In addition, re-
suscitation was performed with 20 mL kg–1 of NaCl 
0.9%, and antibiotic treatment with ceftriaxone  
(30 mg kg–1) and clindamycin (25 mg kg–1).

Between the surgery and the sample taking 24 h 
elapsed. The study is outlined in Figure 1.

Caecal ligation and puncture
The procedure was performed under anaesthe-

sia with 100 mg kg–1 of intraperitoneal ketamine and  
2.5 mg kg–1 of intraperitoneal xylazine. Using  
the traditional technique [23–28], skin and apo-
neurosis incisions, and a midline laparotomy were  
performed. A plane-by-plane dissection was per-
formed, and once the abdomen was entered, the 
cecum was identified, and 1 cm was ligated. Then, 
both sides of the ligated cecum were punctured 
with a 25 × 8 needle, and, subsequently, a layered 
suture was performed.

Succinate
5 mmol kg–1 of succinate, from a 0.4 M solution 

were administered intraperitoneally, as specified 
above. The solution was prepared with succinic 
acid (Sigma Chemical Co., St. Louis, MO, USA), ad-
justed to pH 7.4 with NaOH, and filter sterilized with  
a 0.2 μm filter (Minisart®, Sartorius, Gottingen, Ger-
many) in a laminar flow cabinet. The chosen dose 
corresponds to that described in the literature [29].

Serum sample taking and euthanasia
A blood sample was taken through cardiac punc-

ture 24 hours after the surgery of the respective 
groups. This process was done under anaesthesia 

Figure 1. Timeline of the succinate experiment in septic rats. The different steps of the experiment are represented. 4 groups were 
formed as described in Material and Methods: 1 – control, 2 – succinate, 3 – sepsis, 4 – sepsis + succinate. In groups 2 and 4, 5 mmol kg–1  
of intraperitoneal succinate were administered with a 0.4 M solution 

Succinate
administration
(group 2 and 4)

Surgery
(group 3 and 4)

Blood sample
(all groups)

24 hours 2 hours2 hours
Succinate

administration
(group 2 and 4)
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with 100 mg kg–1 of intraperitoneal ketamine and  
2.5 mg kg–1 of intraperitoneal xylazine. Later, the ani-
mal was euthanized by sectioning the great vessels 
and removing the heart. Blood was centrifuged in 
dry tubes at 3000 rpm. Then, the serum was sepa-
rated and frozen at –75°C. The measurements were 
made within 60 days of the sample taking.

Determination of serum biochemical 
variables

Levels of creatinine, urea, total bilirubin, and lac-
tic acid were determined in mg dL–1 and processed 
on a Vitros 5600 (Ortho Clinical Diagnostics, Raritan, 
NJ, USA) analytical platform, using the dry chemistry 
method.

Measurement of serum ROS 
The measurement of serum ROS was obtained 

using dichlorofluorescin-diacetate (DCFH). 12 µl 
of serum were incubated for 10 minutes in 1000 µl 
of TE buffer solution, and 10 µl of NaOH were 
added to separate the diacetate and thus activate 
the dichlorofluorescin. The emitted fluorescence 
was measured with Jasco FP770 (Jasco, Budapest, 
Hungary) equipment. An emission spectrum be-
tween 500 and 550 nm was used with each sample.  
The expressed value is that of the emission at 525 nm 
because this is the emission peak of DCFH. This 
fluorophore (dichlorofluorescin diacetate) needs 
the diacetate to be separated, activated, and emit 
a signal at 525 nm. This step takes place within the 
cells due to the presence of esterases. This tech-
nique is also described for measurements in extra-
cellular fluids [30–33]. In this case, it is necessary 
to previously separate the diacetate through prior 
incubation with NaOH, without the need for estera
ses [30–33].

Determination of serum caspase-3
This measurement was taken using the ELISA 

technique, with a MyBioSource Rat Caspase 3  
ELISA Kit (Catalogue #MBS763727 Lot #R0143D032), 
following the manufacturer ’s specifications.  
The animal serum was used as described above. 
Samples were measured in an EMP M201 Microplate 
Reader (Shenzhen Emperor Electronic Technology 
Co., Ltd.).

Statistical analysis
The mean with 95% confidence interval (95% CI) 

was used for all results. Shapiro-Wilk test for nor-
mality was used, and all variables had normal 
distribution with a W value between 0 and 1 and  
a P-value higher than 0.05. To analyse whether there 
were significant differences in continuous variables 
between 2 groups the Student's t-test was used, and 
among 3 or more groups the ANOVA test was used. 
The Pearson or Spearman tests were used to corre-
late 2 variables. In all cases, a statistical significance 
of P < 0.05 was assumed. Statistical analyses were 
performed using: EPIinfo 7.0, Statistix 7.0, and Graph 
Pad Prism 8.0.2.

 
Results

The mean and confidence interval of serum ROS 
levels, serum caspase-3 levels, serum creatinine, and 
total bilirubin levels are expressed in Table 1 along 
with the result of the ANOVA test.

Significant differences were found between se-
rum ROS levels measured with the DCFH technique 
(P = 0.017). However, the levels of serum caspase-3, 
serum creatinine, and total bilirubin did not differ 
significantly.

Table 1. Serum levels of biochemical determinations. Results from serum measurements of the 4 groups of rats. ANOVA test was used to find differences 
between groups. The P-value column expresses the results of the ANOVA test, comparing the 4 groups. All values are represented as mean (95% CI)

Control group Succinate group Sepsis group Sepsis + Succinate group P-value
Serum caspase-3 (pg mL–1) 16.96 (12.46–21.45) 17.55 (11.99–23.11) 16.65 (13.09–20.20) 15.04 (10.71–19.38) 0.86

DCFH 0.037 (0.028–0.045) 0.039 (0.289–0.497) 0.083 (0.060–0.106) 0.062 (0.055–0.070) 0.02

Creatinine (mg dL–1) 0.31 (0.23–0.38) 0.31 (0.23–0.39) 0.38 (0.25–0.52) 0.43 (0.20–0.43) 0.30

Total Bilirubin (mg dL–1) 0.12 (0.06–0.16) 0.15 (0.06–0.24) 0.13 (0.07–0.19) 0.14 (0.09–0.18) 0.52

Figure 2. ROS levels in response to succinate administration. 
The mean values and confidence interval of ROS (DCFH emission  
at 525 nm) are expressed in the 4 groups as described in Mate-
rial and Methods. There were significant differences between the 
control group and the sepsis group (P = 0.012) (*), and between 
the sepsis group and the sepsis + succinate group (P = 0.004) (#)
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Differences between groups in ROS levels were 
analysed (Figure 2). There were no significant dif-
ferences in ROS levels between the control group 
and the succinate group (P = 0.29). Also, there were 
no differences between the control group and the 
sepsis + succinate group (P = 0.18). On the other 
hand, there were significant differences between 
the control group and the sepsis group (P = 0.012). 
Furthermore, the administration of succinate re-
duced ROS levels in the sepsis + succinate group 
compared with the sepsis group showed statistical 
significance (P = 0.004). 

Also, differences between groups in serum cas-
pase-3 were analysed (Figure 3). There were no signifi-
cant differences between the control group and the 
succinate group (P = 0.26), the sepsis group (P = 0.15), 

and the sepsis + succinate group (P = 0.24). Addition-
ally, there were no significant differences between 
the sepsis group and the sepsis + succinate group  
(P = 0.39) regarding serum levels of caspase-3.

In creatinine levels, there were no significant 
differences between the control group and the suc-
cinate group (P = 0.44), between the control group 
and the sepsis group (P = 0.1), or between the sepsis 
group and the sepsis + succinate group (P = 0.14). 
However, a significant increase in creatinine lev-
els was observed between the control group and 
the sepsis + succinate group (P = 0.009) (Figure 4). 
Lastly, in total bilirubin levels, there were no signifi-
cant differences between the control group and the 
succinate group (P = 0.59), nor between the control 
group and the sepsis + succinate group (P = 0.21). 
Furthermore, there were no differences between 
the control group and the sepsis group (P = 0.49), 
nor between the sepsis group and the sepsis + suc-
cinate group (P = 0.67) (Figure 5).

The Pearson test was used to analyse the cor-
relation between serum ROS and caspase-3 levels 
in animals in all 4 groups. There was no correla-
tion between the levels of both variables. A scatter 
plot was made with the values of both variables  
(R = –0.17; P = 0.3) (Figure 6). There was no correla-
tion when analysing only the groups that did not 
receive succinate (R = –0.16; P = 0.5), nor the groups 
that received succinate (R = –0.25; P = 0.32).

No correlation was found among ROS and cre-
atinine (R = 0.06; P = 0.71), urea (R = –0.24; P = 0.15), 
and total bilirubin (R = 0.16; P = 0.33). Also, no cor-
relation was found between serum caspase-3 levels 
and creatinine concentration (R = 0.056; P = 0.74), 
urea (R = 0.15; P = 0.37), and total bilirubin (R = 0.17; 
P = 0.31). 

Figure 4. Serum creatinine levels in response to succinate admini
stration. The mean values and their confidence interval of serum 
creatinine are expressed in the 4 groups as described in Material 
and Methods. There were differences between control and sepsis 
+ succinate group

Figure 5. Total bilirubin levels in response to succinate administra-
tion. The mean values and their standard deviation of total serum 
bilirubin are expressed in the 4 groups as described in Material and 
Methods. There were no significant differences among the groups

Figure 3. Levels of activated serum caspase-3 in response to suc-
cinate administration. The mean values and their confidence in-
terval of serum activated caspase-3 are expressed in the 4 groups 
as described in Material and Methods. There were no significant 
differences among the groups
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Discussion
The aim of the administration of succinate to 

the rats was to provide a substrate for complex II of 
the electron transport chain and reducing ROS pro-
duction. It is known that oxidative stress can trigger 
apoptosis in different pathophysiological models  
[9, 10]. Therefore, the rat caecal puncture model was 
used as a sepsis model, and succinate was admin-
istered as a means of controlling ROS production 
and assessing whether this had any effect on the 
levels of apoptosis and sepsis-induced organ failure. 
Likewise, it was analysed if there was a correlation 
between ROS and apoptosis to evaluate if both are 
related, in order to establish a relationship between 
both processes. 

It was determined that systemic ROS levels are 
elevated in septic rats when compared with the 
control group and that the administration of paren-
teral succinate reduces the production of these spe-
cies in septic rats. In contrast, parenteral succinate 
administered in rats that did not undergo caecal 
ligation and puncture does not cause any changes 
regarding the control group, suggesting that suc-
cinate does not affect non-septic rats. In previous 
studies, it has been documented that succinate 
reduces serum ROS levels, but it does not improve 
creatinine levels in septic rats [22].

There are contradicting publications regarding 
succinate levels in pathological situations, and some 
of them regard hypoxia-reoxygenation. Chouchani 
et al. [34] demonstrated an accumulation of succi-
nate during hypoxia-reoxygenation cycles in mice, 
though various tests showed that glucose, palmi-
tate, glutamate, and GABA do not contribute to 
its accumulation. Instead, the cause of the accu-
mulation is fumarate. On the other hand, Wijemars  
et al. [35] analysed biopsies of transplanted kidneys 
and observed a drop in tissue succinate accumula-
tion. However, hypoxia-reoxygenation is not the 
only pathophysiological mechanism in sepsis.

Several studies have shown changes in the pro-
cesses that occur within the mitochondria during 
sepsis, among which the electron transport chain is 
affected. The literature is inconclusive regarding the 
activity rank of the different complexes at this level. 
Lorente et al. [36] demonstrated decreased action 
in the electron transport chain in complex IV, while 
Brealey et al. [37–39] found decreased complex I ac-
tivity but found no differences in complexes II, III, or IV. 
Furthermore, the same group demonstrated that the 
activity of complexes II and III remained unchanged 
both in the muscles and the liver in septic rats [37–39]. 
Conversely, in those organs, complex I activity seem
ed to increase with the severity of sepsis in rats.

In another study done on septic rats, using the 
cecum ligation and puncture technique, the infu-

sion of dimethyl succinate improved the survival of 
the rats [20]. On the other hand, it was demonstrat-
ed that, in rats that were administered LPS, dimethyl 
succinate infusion improved ATP levels and the  
ATP/ADP ratio, which would suggest a recovery 
in the activity of the electron transport chain [21]. 
A different study determined that complex I acti
vity was decreased in the soleus muscle of rats with 
moderate/severe sepsis caused by the intraperito-
neal administration of stool preparation. In con-
trast, there were no changes in complex II activity 
in control group rats. In addition, the administration 
of malate and glutamate (as complex I substrates) 
and succinate (as complex II substrate) improved 
muscle oxygen consumption compared with the 
administration of malate and glutamate alone. Fur-
thermore, this improvement was more pronounced 
in rats with moderate/severe sepsis than in rats with 
mild sepsis [19]. 

Caspase-3 was chosen as an apoptosis mark-
er because it is commonly used in the literature  
[12, 40–43], and its serum levels were used to de-
termine apoptosis levels [44]. The aim of measuring 
serum caspase-3 was to determine the extent of 
apoptosis in tissues.

There were no differences in serum caspase-3 
levels among the 4 groups, nor in tissue caspase-3 
levels in the liver and the kidney among the 4 groups. 
It is known that, in animal models of sepsis, apop-
tosis levels in different organs are increased. For 
example, in a study done on rats exposed to LPS, 
it was observed that the activity of caspases-3, -8, 
and -9, as well as TNF-a levels, increased in the left 
ventricle [45]. On the other hand, rats that under-
went caecal ligation and puncture and were sub-
sequently euthanized at different times showed 
an increase in renal apoptosis, measured using the 
TUNNEL technique, with a peak at 6 hours. Further-
more, renal apoptosis measured by cytokeratin  
18 fragment M30 had 2 peaks, one at 6 hours and 
another at 48 hours [46]. In the study, the deter-

Figure 6. Correlation between systemic ROS levels and serum caspase-3. There was 
no correlation between both variables (R = –0.17, P = 0.3). Emission values are 
expressed at 525 nm DCFH as a ROS marker
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mination of markers was done at 24 hours and  
48 hours, respectively. The mortality of the rats was 
very high and could have altered the results and, 
at 6 hours, it could be an early measurement, and 
there probably would have been no differences in 
serum ROS levels. Therefore, the difference between 
the results obtained in this research and those ob-
tained in the above-mentioned publications could 
be due to the kinetics of elevation in serum of those 
markers.

On the other hand, immunohistochemical stud-
ies show that, in sepsis, there is a higher degree of 
lymphocyte and digestive tract cell death, whereas, 
in the kidney, liver, and lungs, cell death is lower  
[42, 47, 48]. In addition, in a study done on sheep 
(with E. coli infusion), it was observed that there was 
no increase in apoptosis markers in the kidney in 
septic animals. However, in animals that recovered 
from sepsis (the infusion of bacteria was suspended, 
and gentamicin was administered) levels of those 
markers increased in the kidney [50]. These findings 
coincide with the results presented in this study 
because the animals were septic when taking the 
sample.

In addition, there was no correlation between 
serum caspase-3 levels and serum ROS levels. In 
a previous work with septic patients, we showed that 
septic patients have higher levels of caspase-3 but 
not higher levels of serum ROS, and both markers 
did not correlate [51]. The conclusion could be that 
both processes are not related or do not co-occur 
in sepsis. 

Creatinine levels increased by 22% in septic rats, 
but the differences were not statistically significant 
compared with the control group. In contrast, serum 
creatinine levels in septic rats with parenteral suc-
cinate did not decrease compared with septic rats 
without treatment, as it was seen in DCFH levels. 
Also, the sepsis + succinate group had higher cre-
atinine levels than control group. Creatinine is a late 
marker of kidney failure, and a marker such as NGAL, 
which would give an early account of the damage 
and show significant differences among the differ-
ent groups, was not used [52–54]. This marker could 
be useful to understand the kidney function in the 
different groups.

Lastly, there was no correlation between ROS 
levels and creatinine, total bilirubin, and urea levels. 
This observation suggests that there would be no 
pathophysiological association between ROS levels 
and organ failure. This is like previous studies in 
which there was no correlation between ROS levels 
and serum creatinine levels [22]. In this study, sever-
al of the rats used were also included in the previous 
study to improve the use of resources and reduce 
the number of rats for animal ethics issues. As previ-

ously stated, the cause and pathophysiology of MOF 
is multifactorial, which is probably one of the causes 
for the lack of correlation among the variables men-
tioned above. That is to say that the increase in cre-
atinine levels would be determined by ROS status 
and other previously described pathophysiological 
mechanisms, such as pH, coagulation, endothelial, 
and microcirculation alterations, among others.

Total bilirubin levels in non-septic rats did not 
increase with succinate administration compared 
with the control group. In addition, there were no 
differences in total bilirubin levels in septic rats with 
and without treatment with succinate. The only ref-
erence found in the literature regarding the effect 
of succinate on the liver of septic rats states that 
succinate infusion improves the concentration of 
β-hydroxybutyrate, increases ATP concentration in 
hepatocytes, and glucose oxidation, and decreases 
the lactate/pyruvate ratio [21]. 

The main limitations of the study are the single 
time measurement of ROS and apoptosis markers, 
which did not allow the detection of a potential 
asynchronic correlation between them. The other 
limitation is that renal function was assessed with 
creatinine but not with N-GAL. The main strength 
is that serum ROS were measured and not oxidative 
stress, and it was correlated with apoptosis markers, 
and with kidney and liver damage markers. 

Conclusions
Succinate reduces ROS levels in septic rats but 

does not reduce caspase-3 levels as an apoptosis 
marker. Also, there was no correlation between ROS 
levels and caspase-3 levels, suggesting that both 
processes are not connected. Finally, succinate did 
not reduce creatinine and bilirubin levels as markers 
of organ failure, and there was no correlation be-
tween the apoptosis marker and serum ROS mea-
surement and organ failure markers.
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