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Abstract

Multiple trauma patients require extremely good management and thus, the trauma team needs to be prepared and 
to be up to date with the new standards of intensive therapy. Oxidative stress and free radicals represent an extremely 
aggressive factor to cells, having a direct consequence upon the severity of lung inflammation. 
Pulmonary tissue is damaged by oxidative stress, leading to biosynthesis of mediators that exacerbate inflamma-
tion modulators. The subsequent inflammation spreads throughout the body, leading most of the time to multiple 
organ dysfunction and death.
In this paper, we briefly present an update of biochemical effects of oxidative stress and free radical damage to the 
pulmonary tissue in patients in critical condition in the intensive care unit. Also, we would like to present a series of 
active substances that substantially reduce the aggressiveness of free radicals, increasing the chances of survival.
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Multiple trauma patients are, and will always be, a chal-
lenge for the intensive care unit (ICU) [1, 2]. Most often, pa-
tients with multiple traumas develop serious lung problems 
due to several complications arising from injury, infections 
or from mechanical ventilation. The management of the 
respiratory system has a special importance [3], due to the 
constant and critical need of tissue oxygenation of the body 
[3−6]. Recorded data in Trauma Register DGU (Germany) 
[6], and presented by Huber et al. [6], highlight a high mor-
tality rate with pulmonary trauma patients: 17.5% (16.5% 

male and 20.5% female). In retrospective group studies 
(2002–2011) patients with an ISS score higher than 16. 48% 
were patients who have suffered lung contusion, out of 
which, 39% pneumothorax, 28% hemothorax, 12% lung 
lacerations, 3% thoracic vessel injuries [6].

Acid-base imbalances [7], low oxygenation [8] and cellu-
lar death [9] are just some of the complications of a deficient 
respiratory system, that lead to multiple organ damage [10]. 

In turn, the pulmonary tissue is affected by injuries, 
inflammations (Systemic Inflammatory Response Syndrome 
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— SIRS), and infections (Acute Respiratory Distress Syn-
drome — ARDS, Ventilator-Associated Pneumonia — VAP) 
[11]. Together, those clinical aspects accelerate biochemi-
cally the production of free radicals with devastating effects 
for the cell and by default for the whole biological system 
[12–14]. Thus, this stimulates the so-called ‘oxidative stress’ 
[15, 16], which has a significant contribution in the clini-
cal status of the patient. Pulmonary dysfunction leads to 
a series of complications that make recovery impossible [6] 
through the activation of the hyper-metabolism induced 
by severe trauma.

In this paper, we propose an update to the action of 
free radicals and oxidative stress on the pulmonary tissue 
in patients with multiple traumas and also an update to 
the current research concerning therapy with antioxidants.

BIOCHEMICAL ASPECTS OF FREE RADICALS AND 
THE ACTIONS OF OXIDATIVE STRESS

Biochemical reactions that take place in cells are all driv-
ing forces that sustain life [17]. In physiological conditions, 
oxygen is used by our body for cellular respiration, defence, 
detoxification and embryonic development. Due to physi-
ological imbalance or traumas, the oxygen is transformed in 
non-physiological species, which are toxic for the body and 
are called free radicals. Free radicals are unstable molecules, 
ions or clusters of atoms, with an extremely high reactivity 
toward molecules around them [17−22]. 

The oxidative stress affects mainly the cellular organelles 
[23]. These alterations of physiological functions are caused 
by extremely reactive free radical compounds that influence 
enzymatic and membrane activities. The extremely high 
reactivity of these free species becomes very important 
when it comes to the study of tissue complications, espe-
cially in the case of patients with multiple trauma, when 
because of the significant injuries, the patient develops 
hyper-metabolism [24, 25]. The biochemical alterations at 
the cellular level imply oxidative reactions of the DNA, struc-
tural modifications of the proteins and oxidative modifica-
tions of lipids [26] (Fig. 1). 

Reactive oxygen species are produced in high quanti-
ties through endogenous metabolisms [27], while at the 
same time, there are also a large class of exogenous factors 
that increase the production of free radicals. Such mecha-
nisms that can generate free radicals inside the body are 
represented by: the activation of neutrophils, the electron 
transport chain at the mitochondrial level, arachidonic acid 
metabolism, oxide-reduction of xanthine [28] or nitric oxide 
synthesis [27, 29–31]. The respiratory chain [32–34] has a key 
role at the cellular level, being responsible for the conversion 
of oxygen in water molecules. At the neutrophils’ level, the 
major source of oxygen is the enzymatic complex NAD(P)
H oxidase. Moreover, severe infections of the pulmonary 
tissue can lead to massive synthesis of reactive species of 
oxygen and accumulation. The enzymatic processes that 
take part in the defence of the tissues transform a part of the 
oxygen in reactive species that lead to tissue inflammation 
[35]. In the pulmonary tissue, the most important source or 
free radicals are the neutrophils, eosinophils, leucocytes or 
different enzyme modulators [36]. 

The biochemical process activities lead to the over-
production of inflammatory molecules with immediate 
response on inflammation spreading [37, 38]. Chang et al. 
suggest that in this case proteoglycans have a determinant 
role, since they are responsible for the response given by 
the aggression [39]. The level of inflammatory mediators 
determines the level of inflammatory response [40]. The 
endotoxin, the activation of the complement, the cytokines, 
the arachidonic acid’s metabolites, liposomal enzymes and 
kinines, histamine, the nitric oxide or the mediators derived 
from the endothelium, are the aggressive participants in the 
decompensation of the patient’s clinical status. The compli-
cations arise together with micro-embolisms, pulmonary 
artery hypertension and the alteration of the respiratory 
functions [41–48]. Neutrophils stimulation through different 
biochemical mechanisms produces high quantities of hy-
drogen peroxide [49–51]. The biosynthesised oxidants have 
a role in destroying bacteria, but the adverse effects produce 
a series of tissue inflammations. The accumulation of neu-
trophils and the exacerbated biosynthesis of inflammatory 
cytokine, combined with the ICU conditions (VAP, SEPSIS, 
etc.) lead to a severe destruction of the pulmonary tissue 
[51−53]. Active oxygenated species, and implicitly oxidative 
stress, affects the lung, especially through lipid peroxidation, 
the increased production of pro-inflammatory molecules, 
protein oxidation and inactivation of antioxidants [54]. The 
abnormal oxidation of proteins from the pulmonary tissue 
that is made possible by the compounds of the oxidative 
stress is directly implicated in the pathogenesis of a series 
of pulmonary diseases. The lipid oxidation is associated with 
the generation of a big number of toxic compounds with 
direct and severe implications in the destruction of cells Figure. 1. The action of oxidative stress on tissues
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through membrane damage, inhibition of the biochemical 
processes of the cell and in the end its death [55–58]. 

A lung injury is often brought by the oxygen therapy 
— hyperoxia induced by mechanical ventilation in the man-
agement of severe respiratory dysfunctions [25, 59−61]. 
There are a series of controversies related to the parameters 
used in mechanical ventilation, especially when we are talk-
ing about an inflammated lung. The severe pulmonary de-
struction and inflammation can have severe consequences 
at a patient with multiple trauma, the majority leading to 
Multiple Organ Dysfunction Syndrome (MODS) [62, 63] and 
death [64–66].

Many critically ill patients are being brought in the emer-
gency units in haemorrhagic shock [67, 68]. Inadequate 
resuscitation and the complications that may arise in this 
case, makes the recovery of the patient hard or impossible 
[69–71]. An aggressive and inadequate fluids resuscitation 
can produce high quantities of reactive species of oxygen 
through the re-oxygenation of the tissue [15]. Once the 
tissue’s reperfusion takes place, an important source of 
reactive oxygen appears, the main biosynthesis being xan-
thone-oxydaze reactions. For this matter, a series of active 
compounds [72−75] that can reduce the inflammations 
resulting from the fluids generated by resuscitation have 

Table 1. Substances with antioxidant capacity

Study Antioxidant Outcome Reference

Ribeiro et al. CANNABIDIOL Antioxidant effects [87]

Reduce lung inflammation

Attenuation of acute lung injury

20 mg kg-1 — 1 single dose

Benetti et al. SULPHURED HYDROGEN Inhibits the acumulation of neutriphiles [88]

Activates the production of enzimatic engoden antioxidants

Wu et al. EICOSAPENTAENOIC AICD Reduces cellular apoptosis [89]

Modulates mitochondrial activity

Santos et al. OLEANIC ACID Strong antioxidant properties [90]

Administration intra-peritoneal injection

Choi et al. DESOXYRHAPONTIGENIN Modulates cytokine biosynthesis [91]

Torres et al. METHYLPREDNISOLONE Positive effects in inflammation and sepsis [92]

Slows down the oxidative damage

Activation of antioxidative enzymes

Kutsukake et al. PIOGLITAZONE Significantly reduces the concentration of IL-6, TNF-α [93]

Blocks haemocyte infiltration

Significant positive effects in acute lung injury

Straaten et al. VITAMIN C Modulates antioxidant enzyme activity [94]

Blocks the production of free radicals

Reduce the stationing in ICU

Reduce mortality

 Protects lung tissue from biochemical injuries cause by oxidative stress

Wischmeyer et al. GLUTAMINE Reduces the level of oxidative stress biomarkers [95]

Significantly reduces mortality

Ayvaz et al. METHYLENE BLUE Positive effects in sepsis [96]

Positive effects in lung injury

Significantly reduces lung tissue injuries

Qin et al. ULISTATIN Reduces considerably the systemic effects of the inflammation [97]

Reduces significantly the complications that can arise from lung injuries

Reduces the effects of free radicals

Liu et al. SALIDROSIDE Reduces the plasmatic concentration of TNF-α, IL-6 and IL-1 [98]

Blocks the specific receptors — peroxisome proliferator

IL — interleukine; TNF-α — tumor necrosis factor alfa; ICU — intensive care unit
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been studies. The compounds that had a great contribu-
tion in the good post-resuscitation management are acid 
valproic [72], or N-acetylcysteine [73]. The complete impact 
of the oxidative stress and free radical on the pulmonary 
tissue and the biochemical and physiological explications 
of all the clinical manifestation that appear in a patient with 
multiple traumas remain unclear and need further research.

THERAPY WITH ANTIOXIDANTS
Destructive effects of free radicals and oxidative stress 

are minimalized naturally by the organism through the de-
fensive antioxidant system. The antioxidants are compounds 
that inhibit or slow down the oxidative damage [76−78] 
brought to a molecule by a free radical [79–81]. The antioxi-
dants react in various ways [82] — inhibitors of the oxidative 
reaction determined by free radicals, saturation with oxygen 
singlet, blocking the chain of oxidative reactions, transform-
ing hydroxyl-peroxides in stable compounds, inhibiting 
some pro-oxidative enzymes or through synergy with other 
antioxidants [77, 83–86] (Table 1). 

The body has such anti-oxidative compounds, naturally 
– anti-oxidative enzyme (glutathionperoxidase, catalase or 
superoxide-dismutase) [86, 87], metals or other compounds 
chelation agents (coenzyme, vitamin, acid uric, peptide, Cu, 
Zn etc.) [88–90]. The cellular membrane is protected by the 
attack of the oxidative stress by ubiquinone, which can be 
found in high quantities in the Golgi mechanism and in 
the liposomal membranes [91, 92]. Nowadays, intensive 
research is being done on a series of biologically-active sub-
stances that can minimize and even block the mechanisms 
that biosynthesise free radicals, in order to avoid pulmonary 
tissue complications. It is known both scientifically and prac-
tically that the loss of control of the pulmonary infections or 
inflammations is directly linked with the spreading of these 
to the rest of the body which result in true physiological and 
pathological catastrophes. 

Ribeiro et al. [87] studied the effect of cannabidiol on 
severe pulmonary tissue affections on laboratory rats. They 
emphasised the anti-inflammatory potential of this com-
pound, demonstrating the beneficial effects brought by the 
reduction of lung injury when the inflammatory process has 
already evolved in the patient, and thus demonstrating the 
ability of the compound to be effective even if the lung is 
already inflammated.

In many scientific papers the beneficial effect of the 
sulphureted hydrogen on the inflammated lung is presented 
[88, 93–97]. Benetti et al. [88] demonstrates that through 
the administration of the sodium mono-hydrogen-sulphate 
(NaHS) that generates sulphureted hydrogen, the accumula-
tion of neutrophils and of eosinophils is inhibited.

Eicosapentaenoic acid – enriched phospholipids extract-
ed from sea cucumber Cucumaria frondosa, also has an inhibi-

tion effect on the reactive oxygenated species [89, 98–105]. 
Wu et al. [89] remarks that this antioxidant compound alters 
the metabolic way of the mitochondrial apoptosis [89].

Santos et al. [90] demonstrated that the intra-peritoneal 
injection of oleanolic acid at one hour after the lung injury 
controls the oxidative and inflammatory process, while 
avoiding important modification from a physiological and 
histological point of view.

The endotoxin responsible for the tissue inflammation 
and the pro-inflammatory effects of the reactive oxygen-
ated species [106-109] are inhibited by another compound 
called desoxyrhapontigenin [61], which is recommended 
by Choi et al. to be used for its anti-oxidative and anti-in-
flammatory properties [91]. Other studies recommend the 
use of small quantities of corticosteroids for long periods 
of time (1−2 mg kg-1 day-1) [91]. Those reduce consider-
ably the systemic effects of the inflammation. Ayvaz et al. 
[96] demonstrate in their study on laboratory animals that 
intravenous administration of 2 mg kg-1 of methylene blue 
reduces considerably the quantity of nitric oxide, endothelial 
nitric oxide synthase. Furthermore they observed positive 
effects on lung tissue ischemia reperfusion damage.

A study on laboratory mice by Torres et al. [92], demon-
strates that the administration of methylprednisolone [92] 
activates the antioxidant compounds of the pulmonary 
tissue. The association of pioglitazone in patients’ therapy 
in ICU reduces significantly the complication that can arise 
from lung injuries. These effects have been studied by Kut-
sukake et al. [93], demonstrating that through the adminis-
tration of this active compound the tumour necrosis factor 
alpha (TNF-α) and interleukin-6 (IL-6) concentrations (Fig. 2) 
are significantly reduced, and also haemocyte infiltration, 
inflammation and cellular death is reduced (Fig. 3) [93]. 
The levels of pro-inflammatory cytokines that are released 

Figure 2. Effects of pioglitazone on IL-6 and TNF-α mRNA levels in 
visceral adipose tissue of CLP mice. Total RNA extracted from adipose 
tissue in each group was subjected to real-time polymerase chain 
reaction analysis. Values are the means ± SD of the mean. CLP: cercal 
ligation and puncture induced visceral–adipose–tissue inflammation, 
PGZ: pioglitazone-treated CLP (10 mg kg-1 for 7 days) [93] (with 
Elsevier agreement)
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uncontrollably in the pulmonary tissue are also inhibited 
by ulistatin [110] or salidroside [111]. The beneficial effects 
of these active compounds on the reduction of plasmatic 
concentrations of TNF-α, IL-6 si IL-1 [30, 110] have been dem-
onstrated and studied. Salidroside inhibits the inflammatory 
response by blocking the specific receptors — peroxisome 
proliferator — activated receptors (PPAR-γ) [111]. 

Glutamine, is the most abundant unessential amino acid. 
Its antioxidant proprieties are intensely studied. Numerous 
beneficial proprieties that this amino acid brings to critically ill 
patients due to its effect on cellular defence pathways, modu-
lation of the inflammatory response and prevention of or-
gan injuries cause by free radicals [112] were discovered. The 
administration of glutamine in pulmonary infections reduces, 
according to studies, reduce hospital mortality and retention 
time in the ICU. Wischmeyer et al. [95], in their study regarding 
the administration of glutamine on critical patients report that 
intravenous administration of 0,3–0,5 g kg-1 day-1 significantly 
improves the clinical status of the patients.

Straaten et al. [94] report the importance of adminis-
tration of vitamin C in critical patients. Numerous studies 
show that vitamin C reduces considerably the production 

of free radicals. Furthermore, in sepsis activates the action 
of macrophages, regulates the production of cytokines, 
modulates the inflammatory response, reduces neutrophil 
oxidative burst and regulates the antioxidant-oxidant bal-
ance. Administration of doses of vitamin C varies depending 
on the case, but in many articles it’s recommended an in-
take of 1000–1500 mg day-1 of vitamin C intravenously for 
3−5 days [94].

Another antioxidant remedy that was reported in spe-
cialized studies is omega 3 fatty acids. Numerous beneficial 
effects of these active substances were shown especially in 
critically ill patients with lung trauma — ARDS, sepsis. Ad-
ministration on entirely path of supplements with a high 
omega 3 fatty acids reduce mortality with 19 % according 
to studies [113,114].

Other compounds with remarkably good anti-oxidative 
and anti-inflammatory effects have been studied for the 
purpose of reducing the inflammatory effects of the oxida-
tive stress on pulmonary tissue, among which pentoxifyl-
line [115], apocynin-nitrone [116], narginin [117], sphingi-
sylphosphorylcholine [118], usnic acid [119], zinc aspartate 
[120], trapidil [121] or melatonin [122].

Figure 3. The effect of pioglitazone on CLP-induced lung injury. Lung tissue was collected 24 h after CLP. Paraffin-embedded sections were stained 
with hematoxylin-eosin (A-F) and immune-stained with CD11b/c (G-L). Figures show comparisons among the sham group (A, D, G, J), CLP group (B, 
E, H, K), and pioglitazone-treated CLP group (C, F, I, L). Each panel shows a picture from an individual animal [93] (with Elsevier Agreement)
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CONCLUSION
A critically ill patient suffers a series of complications 

due respiratory problems. The pulmonary tissue becomes 
inflammated due to infections, trauma or genetic determin-
ism, which induces in the end the spreading of the inflam-
mation and multiple organ death. The conditions of the 
intensive therapy — nursing, the lavage of endotracheal in-
tubation tube, or the mechanical ventilator — lead as well to 
complications in the lungs, sometimes provoking important 
injuries. The extracellular membranes are damaged through 
the action of free radicals, forming toxic compounds that 
have a crucial impact on the physiological status of the 
lung, accelerating the destructive inflammatory processes. 

Oxidative stress and free radicals contribute directly to 
the degradation of the physiological state of the pulmonary 
tissue, complicating the management of the patient with 
multiple traumas. Current research offers a series of alterna-
tives that minimizes the adverse effects of the oxidative stress 
on the pulmonary tissue. The protocolization of antioxidant 
therapy and the investigation of biomarkers responsible for 
oxidative stress becomes a necessity, being useful in minimi-
zation of inflammatory effects caused by free radicals.

In conclusion, it can be affirmed that a serious thought 
should be given when considering these aspects of oxida-
tive stress on the lung. Severe complications that arise due to 
severe inflammations, infections or a partially-working lung 
can only substantially or completely reduce the chances of 
survival in ICU. We consider that current research regarding 
intensive care in multiple trauma cases for reduction of pul-
monary, and implicitly systemic, inflammation and infection 
are extremely important nowadays and should be taken 
into consideration. Our paper’s limitations are given by the 
lack of presentation of all compounds that have antioxidant 
properties and that are used in the control of pulmonary and 
tissue inflammations for patients that are in a critical state.
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