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Abstract

Interleukin 25 (IL-25), also known as IL-17E, is a member of the IL-17 cytokine family and an 
important regulator of the type 2 immune response. Accumulating evidence suggests that IL-25 inter-
acts with diverse immune as well as non-immune cells and plays a rather complicated role in different 
backgrounds of multiple organs. IL-25 has been studied in the physiology and pathology of the intestine 
to some extent. With epithelial cells being an important source in the intestine, IL-25 plays a key role in 
intestinal immune responses and is associated with inappropriate allergic reactions, autoimmune dis-
eases, and cancer tumorigenesis. In this review, we discuss the emerging comprehension of the biology 
of IL-25, as well as its cellular sources, targets, and signaling transduction. In particular, we discuss 
how IL-25 participates in the development of intestinal diseases including helminth infection, inflamma-
tory bowel diseases, food allergy and colorectal cancer, as well as its underlying role in future therapy.
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Introduction
Interleukin 25 (IL-25) belongs to the IL-17 cytokine 

family, which includes IL-17A, IL-17B, IL-17C, IL-17D, 
IL-17E (IL-25), and IL-17F. Stimulated by IL-1β and  
IL-23, IL-17A is produced by CD4+ and CD8+ T cells,  
γδ T cells, and various innate immune cell populations, 
stimulating various antimicrobial peptides, chemokines, 
and proinflammatory and proliferative cytokines [1]. 
However, sharing only 16% homology with IL-17A [2],  
IL-25 and IL-17A are at quite opposite poles. IL-25 was 
first identified by Fort et al. as a Th2-derived cytokine in 
various mouse cell lines and tissues, with high levels of 
gene expression in Th2-polarized cells and the gastrointes-
tinal tract [3]. Apart from various immune cells, epithelial 
cells are also significant sources of IL-25 [2]. Therefore, 
IL-25 has been suggested as a “barrier surface” cytokine, 
released in response to external damage to barrier epithelial 
cells [4]. The function of IL-25 has been investigated in  
the physiology and pathology of various organs [5-8]. IL-25 
induces overproduction of IL-4, IL-5, and IL-13 and leads to 
Th2-skewed inflammation [9]. Apart from promoting type 2 
responses, studies have proved that IL-25 can suppress Th1 
and Th17 responses in different environments including  
the intestine [10-12]. Apart from activity in inflammation 
and allergy reactions, IL-25 also may be involved in tumor- 
igenesis in ways to be explored yet [13, 14].

The role of IL-25 in type 2 immunity has been studied 
over recent years and its involvement in different diseases 

of multiple organs has attracted attention. The function 
of IL-25 in intestinal diseases, such as intestinal helminth  
infection, inflammatory bowel diseases, and food allergies, 
has been studied yet remains obscure.

Sources of interleukin 25

Interleukin 25 is widely distributed in multiple tissues 
and systems such as kidney, bone marrow, alveoli, the cen-
tral nervous system, placenta and bronchial submucosa of 
asthmatic patients [15]. IL-25 was first found in CD4+  
T helper 2 (Th2) cells [3], and was later verified not only 
in immune cells but also in non-immune cells, indicating 
its various cellular sources. In addition to activated Th2 
cells in the gastrointestinal tract and other mucosal tissues, 
immune cells including bone marrow derived mast cells, 
alveolar macrophages and eosinophils are also sources of 
IL-25 [16, 17]. For non-immune cells, epithelial cells in 
the respiratory and digestive systems, brain capillary endo-
thelial cells and fibroblasts can also secrete IL-25 [18, 19]. 
A recent study showed that mesenchymal stem cells from 
the placenta and bone marrow also secrete IL-25 [20]. 

Studies show that apart from Th2 cells, a rare popu-
lation of epithelial cells that are recognized as tuft cells 
is an important source of IL-25 in the intestinal environ-
ment [21]. Tuft cells are a group of rare secretory epithe-
lial cells mainly distributed in the respiratory tract and 
gastrointestinal tract [22]. In the gastrointestinal tract, tuft 
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cells are found throughout the simple columnar epithelia of  
the stomach, the entire small and large intestine, and  
the pancreaticobiliary system, accounting for 0.4% to 2% 
of the epithelial cells in the intestine [23, 24]. Tuft cells act 
as proficient chemosensory sentinels and produce biologi-
cal effector molecules, including IL-25 [22, 25]. Tuft cells 
respond to a wide variety of substances in the gastrointes-
tinal tract by expressing various receptors. Although not 
fully understood, tuft cells are known to express Tas1Rs, 
Tas2Rs, and SUCNR1 for sweet substances, bitter sub-
stances, and succinate, respectively [26, 27]. Moreover, 
tuft cells are a group of epithelial cells that depend on the 
development and expression of the transcription factor 
POU2F3 [23]. Decreased levels of tuft cells and IL-25 ap-
pear in the intestine of POU2F3-/- mice compared to wild-
type (WT) mice during parasite infection [28]. Notably, 
Zhao et al. found that in the small intestine, epithelial cells 
are the main cell sources of IL-25, rather than immune 
cells [29]. Recently, von Moltke et al. further identified 
that in the model of mice infected with helminths, tuft cells 
of 4 epithelium cell types in the small intestine constitu-
tively expressed IL-25, and all IL-25+ cells were tuft cells, 
suggesting that tuft cells are the exclusive epithelial cell 
source of IL-25 in the small intestine [30]. The above ev-
idence suggest that tuft cells are the only cellular sources 
of IL-25 in the small intestine. However, the knowledge of 
tuft cells is still limited and further investigation into their 
involvement in different diseases is required.

Receptors of interleukin 25
The IL-25 receptor (IL-25R) is composed of two sub-

units, IL17RA and IL-17RB. IL-25R is expressed in var-
ious respondent cells, including memory Th2 cells, Th9 
cells, airway smooth muscle cells, endothelial cells, eosino- 
phils, basophils, and group 2 innate lymphoid cells (ILC2s) 
throughout skin, brain, airway, and intestine tissues [17]. 
In the intestinal environment, IL-25R is mainly expressed 
on the surface of ILC2 and CD4+ Th2 cells, which produce 
and secrete type 2 cytokines such as IL-4, IL-5, IL-9, and 
IL-13 in response to IL-25 [31].

Interleukin 25 impacts the differentiation of initial 
CD4+ Th2 cells into Th2 cells [8]. Moreover, IL-25 binds 
to the IL-25R expressed by Th2 cells and induces secretion 
of Th2 cytokines [3]. Paradoxically, the effect of IL-25 on 
Th2 cells in the generation of adaptive type 2 immune re-
sponses seems controversial. A study showed that IL-25R 
is required for late effector responses against chronic  
infection instead of the generation of a sufficient Th2 re-
sponse to helminth infection [32]. Mearns et al. also sug-
gested that IL-25 is unable to impact the differentiation of 
Th2 cells and their development into effector or memory  
Th2 cells [33]. However, several studies have offered ev-
idence that IL-25 may impact Th2 memory cells [34, 35].

In addition to Th2 cells, ILC2s, a group of natural 
adaptive lymphocytes, are also important downstream 

cells of IL-25 [36]. ILC2s were initially described as  
IL-4-, IL-5-, IL-13-producing non-B-/non-T-cells and were 
later characterized as Lin–c-Kit+Sca-1+ cells that could pro-
duce large amounts of type 2 cytokines [3, 37, 38]. ILC2s 
play crucial roles during the initial response in parasite 
invasion, allergic reactions, tissue repair, and intestinal 
homeostasis [9]. Recent studies have classified ILC2s into 
natural ILC2 (nILC2s) and inflammatory ILC2 (iILC2s), 
of which only iILC2s answer to IL-25 and produce type 2 
cytokines [8, 39]. 

There are also other IL-25 responsive immune cell 
types. Blockade of IL-25 signaling results in low levels 
of natural killer (NK) T-cells and IL-13 production by 
neutralizing IL-25 and IL-17BR in an oxazolone-induced 
mouse model of colitis, suggesting that IL-17BR+ NK 
T-cells are another group of IL-25-respondent cells in the 
gut [40]. Hongjia et al. found that dendritic cells also carry 
IL-17RB [41], and Chua et al. subsequently suggested that 
IL-25 activates dendritic cells in Ruminococcus gnavus-as-
sociated intestinal dysbiosis [42]. In addition, eosinophils 
are also identified as effector cells of IL-25 signaling that 
are protective against Clostridioides difficile infection [43].

Recent studies have identified several additional intes-
tinal non-immune cell types, such as epithelial cells them-
selves and mesenchymal cells [44, 45]. In a study focused 
on inflammatory bowel diseases, LGR5+IL-25R+ cells in-
creased in the inflamed mucosa in active patients, indicating 
that intestinal mesenchymal stem cells (MSCs) are possible 
receptors to IL-25 [45]. IL-17RA and IL-17RB are also ex-
pressed compositionally in epithelial cells and smooth mus-
cle cells [29]. Exogenous IL-25 administration up-regulates 
the expression of both IL-25 itself and its receptor IL-17RB, 
which is similar to the phenomenon in nematode infection, 
suggesting a positive feedback mechanism that significantly 
amplifies the effect of IL-25 during infection [29]. IL-25 
induces contraction of intestinal smooth muscle cells, which 
facilitates the excretion of worms during nematode infection 
[29]. The cellular mechanism of IL-25 promoting tracheal 
smooth muscle contraction in mice also has been identified 
in recent studies [46]. The function of IL-25R and its inter-
action with other cytokines in the intestine require further 
elucidation as receptors of IL-25 could be potential targets 
in treating intestinal diseases.

Signal transduction
Given the fact that IL-25 plays an essential role in the 

pathology of multiple diseases, an understanding of sig-
naling pathways of IL-25 is indispensable (Fig. 1). Down-
stream signaling cascades of IL-25 include nuclear fac-
tor kappa B (NF-κB), mitogen-activated protein kinases 
(MAPKs), and janus kinase/signal transducer and activator 
of transcription (JAK/STAT) [2].

As a unique member of the IL-17 cytokine family, IL-25 
mediates immune activities by binding to the IL-17RA/
IL-17RB heteromeric receptor complex [47]. It is report-
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ed that IL-17RA binds to the IL-17RB-IL-25 complex in-
stead of directly binding to IL-25 [48]. Recently, Wu et al. 
confirmed that IL-25 binds to IL-17RB and identified  
2 discrete linear and cyclic epitopes to be the primary docks 
[49]. Wilson et al. further demonstrated that IL-25 only 
interacts with IL-17RB to allosterically facilitate the forma-
tion of the ‘tip to tip’ interface of IL-17RB-IL-17RA, which 
is a key receptor-receptor interaction required to initiate 
signal transduction [50]. Moreover, the study identified the 
IL-25–IL-17RB–IL-17RA ternary complex in which IL-25 
forms a homodimer 2:2 complex with IL-17RB with two 
“wing-like” IL-17-RA co-receptors on both sides [50]. Due 
to this unique structure, both IL-17RB and IL-17RA are es-
sential for IL-25 signal transduction. Competition between 
IL-25 and other IL-17 family members against collective 
receptors (IL-17RA and IL-17RB) may result in the dis-
ability of IL-25 [50, 51]. Studies have shown that IL-25 

inhibits IL-17 function as an IL-17A receptor antagonist in 
synoviocytes [52] and IL-25 function can also be inhibited 
by IL-17B in colon epithelial cells [51].

The SEF/IL-17R (SEFIR) domain of IL-17R recruits 
activator 1 (Act1), which also includes a SEFIR domain 
[53]. The interaction between Act1 and IL-17RB is abol-
ished when the SEFIR domain is deleted in either Act1 or 
IL-17RB [54]. Zhang et al. revealed structures containing 
the conserved α-helix in both IL-17RA and IL-17RB for 
Act1 binding [55, 56]. A study determined that Act1 defi-
ciency in intestinal epithelial cells resulted in diminished 
expression of the Lin–c-Kit+ innate immune cell popula-
tion as well as Th2 cell-type cytokines and promotion of 
worm infection. The study further verified that lower ex-
pression of IL-25 in intestinal epithelial cells was present 
in the worm-infected epithelial-specific Act1-deficient 
mice compared to wild-type control mice, indicating that 
Act1-mediated signaling in the epithelium is vital for the 
IL-25-induced Lin–c-Kit+ innate cell population [57]. 

TNF receptor-associated factor 6 (TRAF6), a member 
of the TRAF family, binds to the amino-terminal part of 
Act1[54]. The specific structure of the Act1–TRAF6 com-
plex remains vague, yet 3 TRAF6-binding motifs in Act1 
(amino acid residues [in human Act1] 15–20 and 37-42 in 
the N-terminal region and 327-334 in the Ser–Gly–Asn–
His hydrolase region, respectively) have been discovered 
[54]. Recruited TRAF6 subsequently activates TAK1, 
then leading to NF-κB and MAPK-AP-1 (JNK and p38) 
pathways [58]. TRAF6 has been proven to be vital for the 
NF-κB pathway but dispensable for the MAPK pathway, 
as NF-κB activation was diminished in TRAF6-deficient 
murine embryonic fibroblasts, while MAPK activation was 
not [46, 59]. This also suggests the existence of MAPK 
activation pathways independent of TRAF6. TRAF4 is 
also a member of the TRAF family recruited by Act1 [60]. 
TRAF4 knockout mice showed abolished IL-25-induced 
phosphorylation of ERK1/2 and p38, revealing that acti-
vation of MAPKs is TRAF4-dependent [61]. On the other 
hand, TRAF4 mediates the recruitment of smad-ubiquitin 
regulatory factor 2 (Smurf2), which induces degradation of 
azoospermia-associated protein 2 (DAZAP2), an inhibitory 
molecule that blocks Act1/IL-25R interaction by interact-
ing with IL-17RB [61, 62]. The disassociation of DAZAP2 
from IL-17RB increases Act1/IL-25R interaction and  
IL-25 reactivity [61].

Interleukin 25 also activates JAK/STAT, which is re-
sponsible for inducing a variety of cellular mechanisms. 
STAT5 is recruited to IL-25R in a ligand-dependent manner 
via unique tyrosine residues on IL-17RB, suggesting that 
IL-25 activates STAT5 in a direct way independent of Act1 
[63]. JAK2 and STAT5 bind to the IL-25R complex upon 
IL-25 stimulation [64]. IL-25 also stimulates keratinocyte 
proliferation and induces the production of inflammatory 
cytokines and chemokines by mediating the Act1-JAK1/2-
STAT3 pathway through IL-17RB in keratinocytes [5].

Fig. 1. Signaling pathways of interleukin 25 (IL-25). IL-25 
forms a homodimer 2:2 complex with IL-17RB with two 
“wing-like” IL-17-RA co-receptors on both sides. Act1 is re-
cruited by the SEFIR domain of IL-17R (both IL-17RA and 
IL-17RB). TRAF6 binds to Act1 and mediates NF-κB and 
MAPK signaling. NF-κB signaling is mainly TRAF6-de-
pendent while activation of MAPKs is also TRAF4-depen-
dent. TRAF4 recruits Smurf2 and leads to disassociation of 
DAZAP2 from IL-17RB, increasing Act1/IL-25R interac-
tion and IL-25 reactivity. In addition to NF-κB and MAPK 
signaling, IL-25 also activates the JAK/STAT pathway
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Diverse signaling pathways activated by IL-25 pro-
vide possible therapeutic targets for related diseases and 
are a direction for future research. However, the specific 
mechanism mediating IL-25 signaling requires elaboration.

Interleukin 25 in intestinal diseases

Intestinal helminth infection

Parasitic helminth infection elicits a type 2 cyto-
kine-mediated inflammatory response, in which IL-25 
plays the role of mediating type 2 immunity. IL-25 is con-
sidered essential for clearing helminth infections. Wild-
type mice were resistant to Trichuris infection with the ex-
pulsion of worms by day 20, whereas IL-25–/– mice failed 
to eradicate the infection [65]. Similar results indicating 
impaired expulsion of Trichinella spiralis [66], Nippos-
trongylus brasiliensis [33, 67], and Heligmosomoides poly-
gyrus [34] worms were found in mice lacking IL-25. IL-25 

also inhibits intestinal inflammation caused by helminth 
infections. IL-25–/– mice infected by Trichuris showed in-
testinal inflammation associated with increased expression 
of interferon γ (IFN-γ) and IL-17 [65]. IL-25 reduces Th1 
cytokines such as IL-1, IL-6, and TNF-α produced by most 
helminth infections [21]. 

Tuft cells have been lately identified as the major cel-
lular source of IL-25 in the small intestine upon helminth 
infection [28, 29]. Tuft cells employ a chemosensing path-
way to sense lumen cues, such as microbe-derived metab-
olites [68]. Following the release of IL-25 from tuft cells 
there occurs rapid and robust expansion and production 
of cytokines secreted by ILC2s [28, 67, 69]. Th2 cell re-
sponses and clearance of N. brasiliensis infection were sig-
nificantly compromised in ILC2-deficient (Rorαfl/sgIl7rCre), 
demonstrating the necessity of ILC2s during nematode 
infection [70]. Recently, a feed-forward circuit (Fig. 2) 
involving tuft cells, IL-25, and ILC2 was discovered 
during helminth infection in the small intestine. IL-25 

Fig. 2. The feed-forward circuit in gastrointestinal helminth infection. Tuft cells are the major cellular sources of inter-
leukin 25 (IL-25) in the small intestine upon helminth infection. A feed-forward circuit involving tuft cells, IL-25 and 
ILC2 appears during helminth infection in the small intestine. IL-25 derived from tuft cells activates ILC2s to secrete 
IL-13 and IL-4, which induce epithelial crypt progenitors to promote differentiation of tuft and goblet cells in reverse
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derived from tuft cells activates ILC2s to secrete IL-13 
and IL-4, which induce epithelial crypt progenitors to pro-
mote differentiation of tuft and goblet cells in reverse [30].  
The circuit was further addressed in driving small intestine 
remodeling, the activation of which by chronic adminis-
tration of IL-25 as well as H. polygyrus infection led to 
alterations in the small intestine, including the increase of 
secretory cells, a corresponding decrease of absorptive en-
terocytes, and lengthening of the small intestine, resulting 
in metabolic homeostasis in the host and a reproductive 
niche for the pathosymbiont [68]. The study also illustrated 
succinate, an end-product of Tritrichomonas metabolism 
detected by tuft cells, as a signal of hypoxic stress and 
injury to initiate a tuft–IL-25–ILC2 circuit and ameliorate 
intestinal inflammation. This indicates a potential role of 
diet and microbiota-derived intestinal metabolites in in-
ducing a tuft–IL-25 circuit during helminth infection, the 
regulation of which remains to be fully elucidated [68]. 
Delay in helminth clearance in tuft cell-deficient mice is 
more significant than that in IL-25-deficient mice, sug-
gesting that the tuft–IL-25 interaction involves more reg-
ulation [71]. Indeed, analysis of the tuft cell–ILC2 circuit 
further demonstrated that tuft cells synthesize and secrete 
cysteinyl leukotrienes that cooperate with IL-25 to activate 
ILC2s specifically during N. brasiliensis infection; how-
ever, cysteinyl leukotrienes seem to be dispensable for  
the tuft cell response induced by intestinal protists [71].

In primary Echinostoma caproni infection, IL-25 is 
required for the development of the Th2 phenotype, and 
IL-25 may also have an impact on Th2 memory cells to 
resist helminth infection in secondary infection [35]. The 
exogenous administration of IL-25 restored the severely 
impaired host memory response against a secondary infec-
tion with H. polygyrus bakeri in IL-25–/– mice [34]. More-
over, secondary infection with E. caproni elicits a type-2 
response without IL-25 expression [35]. These studies im-
ply the potential function of IL-25 of inducing differentia-
tion of the Th2 memory subset during nematode infection, 
the mechanism of which still requires investigation.

Though IL-25 is generally considered a protective cyto-
kine during helminth infection, IL-25 may also be involved 
in the pathogenic process [21]. Disruption of IL-25 along 
with thymic stromal lymphopoietin (TSLP) and IL-33 
signaling suppressed chronic and progressive pulmonary 
type 2 cytokine-driven inflammation and fibrosis; however, 
blockade of IL-25 alone failed to present any significant 
change [73]. A recent study determined that IL-25 level 
peaked in accordance with oviposition around week 10 af-
ter infection. These results suggest that IL-25 might play 
a role in the maintenance of schistosome egg-induced pa-
thology rather than in initiating schistosomiasis [73].

Inflammatory bowel diseases

Interleukin 25 is also involved in inflammatory bowel 
disease (IBD), which includes ulcerative colitis (UC) and 

Crohn’s disease (CD). The etiology and pathogenesis of 
IBD have not been fully understood. It is suggested that its 
pathogenesis is associated with the inflammatory response 
of the intestinal mucosal immune barrier to intestinal an-
tigen [15].

Interleukin 25 production was found to be down-
regulated in human IBD mucosal samples by analyzing  
IL-25 RNA and protein expression [74]. Su et al. con-
firmed that IL-25 levels significantly decreased in the in-
testinal mucosa as well as the serum of patients with active 
inflammatory bowel disease and were negatively correlat-
ed with endoscopic disease activity and C-reactive protein 
level. Subsequent in vitro studies demonstrated that IL-25 
inhibited IBD CD4+ T-cell activation to negatively regulate 
IFN-γ, TNF-α, and IL-17A production but enhanced IL-10 
secretion [75]. These above findings suggest that IL-25 is 
down-regulated in IBD.

Although most of the studies related to IL-25 suggest 
that IL-25 plays a role in inhibiting inflammation, there 
are studies showing that IL-25 may promote type 2 im-
mune colitis [8]. IL-25 can be enhanced after anti-TNF-α 
or TGF-β1 treatment, underlining its different regulation 
by TNF-α and TGF-β1 [74]. Considering that IL-25 can be 
regulated by different immune response components and 
that UC and CD are mediated by different immune types 
[76], we will discuss them separately.

Accumulating evidence has demonstrated that UC 
is mainly a type 2 immune response in which IL-17RB+ 
NK T-cells and nuocytes (a subset of ILC2 cells) induce 
type 2 cytokines, including IL-4, IL-5, and IL-13 [77]. In 
a tight control follow-up study enrolling serum samples of 
IBD patients, IL-25 expression was significantly higher in 
samples from patients with unstable remission compared 
to those with stable remission and was linked to T-cell 
activation when restricting analyses to UC patients only 
[78]. Blockade of IL-25 signaling remarkably improved 
weight loss and colon ulceration and resulted in decreased 
nuocyte and NK T-cell infiltration of the mucosa in mice 
with oxazolone-induced UC [40]. Similar results indicating 
that IL-25 is pathogenic in UC were obtained in several 
other studies using dextran sulfate sodium (DSS)-induced 
colitis models [51, 79]. IL-25 also has a negative effect on 
monocyte and macrophage production, resulting in ame-
lioration in oxazolone-induced colitis [80]. Interestingly, 
several other studies offered contradictory results using the 
same colitis models. The elevation of IL-23 and TGF-β1 
along with the promotion of inflammation was seen in 
DSS + rIL-25 (recombinant IL-25)-treated mice compared 
to DSS-treated mice [81]. 

Crohn’s disease is another complex pathogenesis relat-
ed to Th1 cytokines, including IFN-γ, TNF-α, and IL-23 
[82]. It is also considered related to Th17 cells, which pro-
duce increased levels of IL-17 and IL-22 [83]. Tuft cells 
were significantly reduced in CD ileal specimens com-
pared to normal specimens from patients without a CD 
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diagnosis [84]. In a TNF-α-overexpressed mouse model 
of colitis, tuft cell hyperplasia induced by administration 
of succinate resulted in reduced ileum inflammation [84]. 
IL-25 may play a similar protective role as tuft cells in CD 
as tuft cells are predominant sources of IL-25 in the small 
intestine. Indeed, restoring the expression of IL-25 in the 
colon led to inhibiting the Th1/Th17 pathway mediated by 
IL-12/23 in the mucosa, revealing potential for CD thera-
py [12]. Inflammation and production of IL-12 and IFN-γ 
were significantly reduced after IL-25 treatment in mice 
with peptidoglycan (PGN)-, 2,4,6-trinitrobenzene sul-
phonic acid (TNBS)-induced colitis, indicating that IL-25 
inhibits Th1 cell-driven inflammation in the gut [80]. Re-
lying on commensal bacteria, IL-25 is also able to limit 
Th17 responses through the direct induction of IL-13 in the 
intestine [85]. Another study verified that IL-25 downreg-
ulated CD4+ T-cell differentiation into Th17 and Th1 cells 
through IL-10, particularly in CD patients [75].

A previous article suggested that IL-25 is a dou-
ble-edged sword, and in our study, we found that IL-25 fa-
cilitates UC while inhibiting CD; however, its action may 
also be affected by endogenous and exogenous sources [8], 
a possibility which has not been studied yet. 

There are also studies investigating the upstream 
regulation of IL-25. Though the IL-25 gene is located at 
14q11.2 within the CD susceptibility locus [86] and was 
proved to be associated with CD and UC by analysis of 
genetic databases [87], no significant difference concern-
ing its coding regions (c424C/A) was found between IBD 
patients and controls [86]. Thus, other factors involved in 
the transcription of IL-25 resulting in aberrant amounts 
of IL-25 in IBD patients have been further investigated. 
The regulation of microRNA (miRNA) may be involved 
in the development of IBD as altered microRNA expres-
sion has been reported in the serum and mucosa of IBD 
patients [88]. In a study using the luciferase assay, mmu-
miR-135b-5p and mmu-miR-691 were verified to bind to 
the IL-25 3′UTR, leading to reduced expression of IL-25 
in UC [89]. Shi et al. discovered a decrease in IL-25 and 
a correlated increase in miR-31 in the colons of mod-
el mice and CD patients [12]. By target validation anal-
ysis in mouse primary cells and human colon cell lines,  
the study confirmed that miR-31 negatively regulates  
IL-25 expression by binding to its messenger RNA 3′-un-
translated region [12]. Restoration of colonic IL-25 ex-
pression through the administration of miR-31 inhibitors 
showed a therapeutic effect for TNBS-induced colitis, sug-
gesting that anti-miR-31 may be a promising therapeutic 
option in CD [12]. 

Compared to IBD patients in remission and healthy 
controls, the CD4+IL-25R+ as well as LGR5+IL-25R+ cells 
of active CD and UC patients were significantly increased 
in the colonic mucosa, indicating that IL-25 may act on 
MSCs in IBD as well [45]. Subsequent in vitro studies 
showed that IL-25 may facilitate the proliferative effect of 

MSCs on the intestinal epithelium through the PI3K/Akt 
pathway to maintain epithelial cell homeostasis [9]. IL-25-
primed MSCs improved DSS-induced colitis better than 
MSCs alone via inhibiting the Th17 immune response and 
inducing a T regulatory cell phenotype, as a decrease in 
IL-17A+CD4+ cells and an increase in FOXP3+CD4+ cells 
in the peripheral blood and lamina propria CD4+ cells of 
DSS-treated rats were found in the IL-25 MSC group com-
pared to the MSC group [90]. Moreover, Fu et al. demon-
strated a novel strategy to promote delivery of MSCs to the 
inflamed colon and their immunosuppressive capability by 
manipulating them to express CX3C chemokine receptor 1 
and IL-25 in DSS-challenged mice [91]. These findings 
may shed light on future possible therapies of IBD via tar-
geting IL-25 R+ MSCs or manipulating MSCs to express 
IL-25.

In addition, anti-IL-25 antibodies and anti-IL-17BR 
antibodies have been confirmed to reduce the continuing 
inflammation of IBD [40]. Overall, IL-25 may be a po-
tential therapeutic target for IBD, but the roles of IL-25 in 
IBD require further investigation (Table 1).

Food allergy

Food allergy (FA) is primarily a type 2 cytokine dis-
order and IL-25 has been reported to play a role in epi-
thelial pathogenesis [92]. Indeed, IL-17RB–/– mice, which 
displayed reduced acute diarrhea, Th2 responses, and 
Evans blue dye in the intestine [93], were more resistant 
than iIL-25Tg mice in developing an experimental FA 
[94]. FA results in the upregulated production of IL-25, 
IL-33, and TSLP and the activation of NF-kB signaling 
[95]. Released upon allergic sensitization, IL-25 enhances 
ILC2-derived IL-13 production, which facilitates goblet 
cell hyperplasia and intestinal permeability and mediates 
gut barrier function [94]. The injection of monoclonal an-
tibodies either to IL-25, IL-33 receptor, or TSLP strong-
ly inhibited FA development, and optimal suppression 
of established FA required a cocktail treatment with all  
3 monoclonal antibodies [96]. This study provides proof 
that IL-25 is imperative to induce FA and sufficient to 
maintain this disorder at least partially. Moreover, IL-25 
seems to be the bridge that crosstalks between the skin 
and gut to propagate allergic reactions. Upon mechani-
cal skin injury, intestinal cell-derived IL-25 along with 
keratinocyte-derived IL-33 increase and activate ILC2 to 
produce IL-4, thus promoting expansion and activation 
of mast cells in the intestine, suggesting that inhibition 
of scratching may be therapeutic in alleviating FA by re-
ducing intestinal mast cells [97]. Oxytocin may also be 
a novel treatment for FA by suppressing the production of 
TSLP, IL-25, and IL-33 through NF-κB signaling [98]. 
OXTR–/– mice, which were abolished by oxytocin recep-
tor (OXTR), showed extreme increases in TSLP, IL-25, 
and IL-33 levels as well as severe systemic anaphylaxis  
and intestinal inflammation [98].
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Colorectal cancer 

In cancer, IL-25 also plays a paradoxical role which 
includes both tumor supportive and tumor suppressive 
effects. IL-25 was shown to exert anti-cancer effects 
in a few cancers including colon cancer, dependent on  
B cells and increased levels of eosinophilia induced by 
IL-5 [99]. IL-25 and its receptor showed a significant de-
crease in tissues of colorectal cancer (CRC) patients com-
pared with ulcerative colitis patients [100]. Acute blockade 
of IL-25 led to increased risk of tumor progression and 
tumor burden in a murine colitis-associated cancer model 
[101]. These results indicate that IL-25 and IL-25R might 
tend to inhibit CRC in the long-term inflammatory environ-
ment such as ulcerative colitis. However, there is evidence 
that IL-25 may be tumor supportive via promoting the cell 
cycle, inducing epithelial-mesenchymal transition and me-
tastasis [102]. In CRC patients, systemic levels of IL-25 
were significantly elevated in stage IV patients compared 
to stage I-III patients [103]. A recent study identified that 
CRC patients with higher tumor IL-25 expression had re-
duced survival and that the IL-25-ILC2 axis was a possible 
pro-tumoral mechanism of CRC. In the Apc1322T/+ mouse 
model of spontaneous intestinal tumorigenesis, mice were 
treated with rIL-25 for eight weeks, and an increase in 
tumor burden was observed. This result was due to dra-

matically increased tumor infiltrating ILC2s affected by 
IL-25 preferentially. Moreover, IL-25-deficient Apc1322T/+ 
mice developed fewer tumors and longer life expectancy 
than IL-25-replete controls, indicating the IL-25-ILC2 axis 
as a novel therapeutic target against CRC [104]. Though  
IL-25 shows potential for future cancer treatment, analyses 
regarding levels of IL-25 and its receptor at each stage of 
diseases and the mechanisms involved are required.

Conclusions
Interleukin 25, a unique member of the IL-17 family, 

is considered a type 2 cytokine and mediates crosstalk 
between adaptive and innate immune responses. In this 
review, we focused mainly on intestinal diseases despite 
its multiple functions in other systems. Existing evidence 
suggests that IL-25 plays a dual role in immune respons-
es during the development of different intestinal diseases.  
IL-25, produced as the first line of defense against infec-
tions and stimulations, promotes type 2 cytokines, includ-
ing IL-4, IL-5, and IL-13, produced by both immune and 
non-immune cells. This role of IL-25 is vital in the patho-
genesis of FA and UC as well as in the adaptive remodel-
ing and clearance during helminth infection. Another role 
of IL-25 is inhibiting Th1 and Th17 inflammation in the 
gut; thus, it may be protective in CD. Finally, IL-25 shows 

Table 1. Studies on the relationship between inflammatory bowel disease (IBD) and interleukin 25 (IL-25)

Disease Study model Sample Expression of IL-25 Other conclusions Reference

UC and CD Human Serum samples Highly expressed in UC patients 
with unstable remission compared 

to those with stable remission

– [78]

UC and CD Human and 
murine

Histopathological 
samples

Downregulated in both UC and  
CD patients

IL-25 resulted in amelioration in 
PGN-, TNBS-, and oxazolone-

induced colitis models

[80]

UC and CD Human Serum samples 
and histopathological 

samples

Downregulated in the sera and 
inflamed mucosa of patients with 

active IBD compared with controls

IL-25 downregulated CD4+ T cell 
differentiation into Th17 and Th1 

cells through IL-10 in IBD patients

[75]

UC and CD Human Histopathological 
samples

Downregulated in both UC and CD 
patients

IL-25 can be enhanced after anti-
TNF-α or TGF-β1 treatment

[74]

UC Murine Histopathological 
samples

Overexpressed in oxazolone-
induced colitis model

Blockade of IL-25 signaling 
remarkably improved weight loss 
and colon ulceration in oxazolone-

induced colitis model

[40]

UC Murine Histopathological 
samples

– IL-25-/- mice suffered less weight 
loss, diarrhea, and shortening of 
colon length than WT mice after 

exposure to DSS

[79]

UC Murine Histopathological 
samples

– DSS + rIL-25-treated mice showed 
promoted inflammation compared 

to DSS-treated mice

[81]

CD Human and 
murine

Histopathological 
samples

Downregulated in the inflamed 
sites of CD patients and TNBS-

induced colitis model

Restoring colonic IL-25 expression 
via intracolonic administration of 
MiR-31 inhibitor was therapeutic

[12]

CD – Crohn’s disease, PGN – peptidoglycan, TNBS – 2,4,6-trinitrobenzene sulphonic acid, UC – ulcerative colitis, DSS – dextran sodium sulphate
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potential in the prognosis and treatment of colorectal can-
cer. A summary of protective and destructive effects of 
IL-25 in intestinal diseases is shown in Figure 3.

Though a couple of mechanisms of IL-25 involvement 
in the intestinal environment have been discussed, litera-
ture data are still limited. The specific molecular mecha-
nisms of IL-25 action elicited by different stimulants (e.g., 
helminths, allergens, and inflammation) and how IL-25 is 
involved in other intestinal diseases (e.g., CRC) need to 
be further explored. Most studies concerning IL-25 in the 
intestinal environment are mostly limited to helminth in-
fections, and its relationship with other intestinal diseases 
needs more attention. Levels of IL-25 in peripheral blood 
and tissues in patients might be a valuable biomarker for 
predicting prognosis. And since studies on CRC and IBD 
have been mainly focused on animal models, it is suggest-
ed that these investigations should be more focused on 
sensitivity and specificity of IL-25 and IL-25R levels in 
patients. More prospective studies with larger sample sizes 
are also needed to draw more definitive conclusions.

The idea of IL-25 treating helminth infections is prom-
ising, as studies show that IL-25 can improve helminth in-
fections by promoting differentiation of epithelial cells and 
helminth clearance. Recent investigations have reported that 
IL-25 may target IL-25R-expressing cancer cells and result 
in positive clinical responses. It may also be therapeutic for 
CD via downregulating Th17 and Th1 inflammation in the 
intestine. Blockade of IL-25 may also be therapeutic in UC 
where IL-25 is considered pathogenic. Studies that evaluate 
the clinical application of humanized anti-IL-17RA anti-
body may offer indirect evidence of the inhibition of IL-25 
in clinical settings [105, 106]. Nevertheless, data on the di-
rect inhibition of IL-25 for the treatment of intestinal dis-
eases are still scarce and require further investigation [107].  
The structure, function, target and potential mechanism of 
IL-25 still require further investigation for drug develop-
ment. It is hoped that an IL-25-based therapeutic approach 
may be promising in the treatment of intestinal diseases.
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