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Abstract

Graves’ ophthalmopathy (GO) is an inflammatory autoimmune disorder of the orbital adipose 
tissue and extraocular muscles, and it is associated with Graves’ disease (GD). GO is triggered by 
binding and activation of orbital fibroblasts by autoantibodies (TSI) direct against thyroid-stimulating 
hormone receptor (TSHR) and insulin-like growth factor 1 (IGF-1R), which is highly expressed within 
the orbit. Moreover, interaction of T cells with orbital fibroblasts that involve T-cell receptor (TCR), 
autoantigen, and major histocompatibility complex class II (MHC II) molecule, as well as CD40:CD154 
signalling, activates p38, ERK 1/2, and JNK pathways. These processes induce fibroblast activation, 
proliferation, and secretion of chemokines and inflammatory cytokines to maintain inflammation within 
the orbit. Furthermore, increased hyaluronic acid production and fibroblast differentiation into adipo-
cytes and myofibroblasts leads to development of GO. The elevated number of molecular factors such 
as PDGF, IL1-β, IL-4, IL-6, IL10, IL-8, IL-16, IL-33, HGF, ICAM-1, osteopontin, CTLA-4, and TGF-β 
are discussed in the paper. Some of them are key markers of disease stage. Better understanding of GO 
pathogenesis leads to development of new therapeutic options. 
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Introduction
Graves’ ophthalmopathy (GO) is an inflammatory au-

toimmune disorder of the orbital adipose tissue and extra-
ocular muscles. The critical clinical signs are retraction of 
upper eyelid and axial proptosis with variable restriction of 
eye movements (often extraocular muscles are involved). 
Conjunctival and corneal inflammatory complications may 
also occur. It is associated with Graves’ disease (GD) [1, 2]. 

A major role in the development of this condition is 
played by autoimmunity of T cells, B cells, macrophages, 
fibroblasts, and adipose tissue within the orbit. Cyto-
kine-mediated inflammation in the orbit is also an import-
ant factor in its development [2]. The most common and 
important extrathyroidal manifestation of GD is GO [1]. In 
most cases, it occurs in patients with active or past hyper-
thyroidism but may rarely develop in patients who are eu-
thyroid or even in a hypothyroid state [3]. About 50-70% 

of patients with GD have mild (or subclinical) symptoms, 
whereas 3-5% of patients show sight-threatening symp-
toms of significant GO with exophthalmos and pain [2, 4]. 
The latter represents an emergency requiring immediate 
treatment. Sight loss in those cases may be due to corneal 
ulceration or to dysthyroid optic neuropathy (DON), which 
occurs more frequently [5]. 

The estimated incidence of GO is 16/100,000 women 
and 3/100,000 men [6, 7]. 

The molecular mechanism of Graves’ 
ophthalmopathy

GD hyperthyroidism is caused by autoantibodies (GD-
IgG) directed against thyroid-stimulating hormone recep-
tor (TSHR). These autoantibodies activate the receptor 
and stimulate thyroid follicular hypertrophy, which leads 
to excessive hormone production [4]. The pathogenesis 
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of GO is not fully understood. TSHR is highly expressed 
within the orbit. This points out their potential role in the 
development of GO [4]. GD-IgG activation of TSHR 
on fibroblasts, preadipocytes, and adipocytes in the soft 
tissue of the orbit is considered as a major factor in the 
pathogenesis of GO. However, GD-IgG may also directly 
activate IGF-1 receptors (IGF-1Rs) on these cells and sup-
port development of GO [8, 9]. GD-IgG and insulin-like 
growth factor-1 (IGF-1) increase secretion of regulat-
ed on activation, normal T-cell expression and secretion 

(RANTES), and IL-16, which intensify T-cell migration 
into the orbit. T lymphocytes interact with orbital fibro-
blasts via a specific CD40:CD154 molecular bridge lead-
ing to fibroblast activation, proliferation, and differentia-
tion into myofibroblasts and adipocytes [8-10]. Activated 
fibroblasts produce GAG in excess, undergo adipogenesis, 
and secrete pro-inflammatory cytokines including IL-1α, 
IL-1β, IL-6, IL-8, macrophage chemoattractant protein-1 
(MCP-1), and transforming growth factor-β (TGF-β), to 
maintain inflammation within the orbit (Fig. 1). Molecular 

TSI
TSHR

GO is triggered by binding and activation of orbital fibroblasts by autoantibodies called thyroid-stimulating antibodies (TSI) directed against 
thyroid-stimulating hormone receptor (TSHR), which is highly expressed within the orbit. TSI and insulin-like growth factor-1 (IGF-1) increase 
secretion of Regulated on Activation, Normal T Cell Expression and Secretion (RANTES) and IL-16, which elevates T-cell migration into the 
orbit.
Helper T cells recognise TSHR peptides located on orbital fibroblasts and lead to the activation and ligation of TSHR by TSI. This process 
induces fibroblast activation, proliferation, and secretion of chemokines, inflammatory cytokines, as well as increased hyaluronic acid 
production and adipogenesis. Moreover, interaction of T cells with orbital fibroblast that involves T-cell receptor (TCR), autoantigen, and 
major histocompatibility complex class II (MHC II) molecule as well as CD40:CD154 signalling activates p38, ERK 1/2, and JNK pathways, 
leading to increased secretion of ICAM-1, NFκB, Il-6, Il-8, and MCP-1, as well as hyaluronan (HA) production, to maintain inflammation within 
the orbit. Activated orbital fibroblasts proliferate and differentiate into adipocytes and myofibroblasts. Adipogenesis is also induced by IL-1β 
through an increase of cyclooxygenase-2 (COX-2). IGF-1R, just like TSHR, can be activated by TSI via PI3K/ACT pathways, upregulating 
peroxisome proliferator-activated receptor-γ (PPAR- γ) expression differentiation and proliferation of adipocytes and accelerate adipogenesis. 
PDGF increases the TSHR expression on orbital fibroblasts and plays also an adipogenic role.

Fig. 1. Pathogenesis of Graves’ ophthalmopathy (GO) 
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pathways including adenylyl cyclase/cyclic adenosine mo-
nophosphate, phosphoinositide 3 kinase/AKT/mammalian 
target of rapamycin, and mitogen-activated protein kinase 
are involved in GO. At present, the development of a GO 
animal model and a new generation of TSHR antibody as-
says indicate TSHR as the primary autoantigen for GO. 
T-cell infiltrates in GO orbital tissues are predominantly 
CD4+, with some studies suggesting the presence of both 
CD8+ and CD4+ T cells [9-12]. Th1-like cytokine profile 
is expressed mainly in GO retrobulbar tissue [10-13]. Th1-
like cytokine expression profile consisting of interferon 
(IFN)-γ, tumour necrosis factor (TNF)-α, IL-1β, and IL-6 
occurs mainly in GO extraocular muscles, whereas IL-4 
and IL-10, Th2-type cytokines, are expressed in orbital fat 
[14]. The duration of GO plays a role in the predominance 
of T-cell subsets. Th1 cells dominate in the active phase of 
GO, and Th2 cells in the late phase [15]. Higher levels of 
IL-1β, IL-6 [16], and IL-17 [17] are also observed in the 
active phase compared to the inactive phase. In patients 
with refractory GO, higher levels of IL-4, IL-6, and IL-10 
are seen, compared to those seen in patients in remission 
[18]. Steroid treatment causes an increase in the level of 
IL-16 and a decrease of IL-8 [19, 20]. A role in the de-
velopment of GO may also be played by IL-10 as well 
as IL-2 polymorphism [20]. The levels of interleukin 2 
[21], IL-16 [22], and IL-33 [23] are elevated in the blood 
of GO patients compared to those of the controls. Serum 
IL-33 levels are positively correlated with T3 and T4, but 
they are negatively correlated with TSH [22]. Serum he-
patocyte growth factor (HGF) is increased in GO patients 
compared to that in control subjects, as well as respons-
es to efficient glucocorticoid treatment [19]. Intercellular 
adhesion molecule-1 (ICAM-1) and soluble vascular cell 
adhesion molecule-1 (sVCAM-1) are adhesion molecules 
that play a role in cell/cell or cell/extracellular matrix in-
teraction, activation, and migration. They are increased in 
the blood of GO patients as compared to those in control 
patients. Their levels seem also to be responsive to the 
treatment [23]. Osteopontin [24, 25], a protein involved in 
inflammation, cell recruitment, cell adhesion, and remod-
elling, is considered to be involved in GO development. 
It is inversely correlated with TSH level and positively 
with T3 and T4 [25]. Another protein called cytotoxic  
T lymphocyte-associated antigen-4 (CTLA-4), a member 
of the immunoglobulin superfamily, which is found on 
T-cell surface, is negatively correlated with these cells. 
Polymorphism of CTLA-4 gene may lead to autoimmune 
diseases [26-28]. Moreover, HLA-B8, an MHC class I cell 
surface receptor, may be associated with GO development, 
but its role remains to be elucidated [29, 30]. In the orbital 
fat in smokers with GO elevated levels of IL-1β and IL-6 
seem to be associated [31]. Transforming growth factor-β 
(TGF-β) and fibroblast growth factor (FGF) are elevated 
in the orbital fat of GO patients, and levels of these factors 
are correlated with the severity of the disease. Platelet-de-

rived growth factor (PDGF) is probably the most important 
among all growth factors in the GO pathological events. 
It is overexpressed in orbital tissue of GO patients, which 
was observed in several studies [32-34], independently of 
the activity grade of GO. Specific isoforms of PDGF in-
crease the TSH-R expression on orbital fibroblasts, ampli-
fying the autoimmune response against TSH-R [32]. Drugs 
blocking PDGF signalling may be new therapeutic options 
[34, 35]. Some of the latest studies indicate that PDGF 
plays an adipogenic role by transforming orbital fibroblasts 
into adipocytes [36]. Adipogenesis is also induced by  
IL-1β through an increase of cyclooxygenase-2 (COX-2). 
It is an inflammation modulating enzyme and is anticipat-
ed to be a central element of the active phase of GO. Its 
mRNA and protein levels have been shown to be overex-
pressed in orbital fibroblasts of GO patients [37], and hy-
aluronic acid (HA) seems to be involved in its regulation. 
However, other studies did not confirm any modification 
of its expression [38]. TGF-β receptor, IGF-1, and insu-
lin-like growth factor binding protein-6 (IBP-6) seem to 
be downregulated [39]. 

Contact of T-cell receptor with major histocompatibil-
ity complex class II (MHC II) molecule and CD40:CD154 
signalling leads to proliferation of orbital fibroblasts. 
Proliferation of orbital fibroblasts may be inhibited by 
blocking antibodies to MHC II, CD40, and CD40 ligand 
(CD154). IFN-γ mediated through Jak2 upregulates ex-
pression of CD40 in orbital fibroblasts [16]. 

Ligation of CD40 with CD154 leads to increased se-
cretion of intercellular adhesion molecule-1 (ICAM-1) 
[17] and nuclear translocation of nuclear factor-κβ (NF-
κβ) [40], IL-6, IL-8, and MCP-1 in GO orbital fibroblasts 
compared with normal controls [41]. CD40 upregulates  
IL-1α secretion, and HA and PGE2 synthesis [42]. Liga-
tion of CD40:CD154 induces all three mitogen-activated 
protein kinase (MAPK) pathways, p38, ERK1/2, and JNK, 
which are engaged in gene expression, cellular prolifera-
tion, differentiation, and apoptosis. 

ICAM expression is mainly P38 MAPK and NF-κβ 
dependent, whereas ERK1/2 and JNK also activate the  
NF-κβ pathway, a transcription factor pathway that regu-
lates genes involved in immune and inflammatory respons-
es [43].

Orbital fibroblasts
Orbital fibroblasts have some unique features, includ-

ing their strong response to cytokines [44], and high lev-
els of inflammatory mediators such as prostaglandins [42, 
45-47], lipoxygenase products [48], and chemokines [49]. 
This may be the background of clinically aggressive GO. 

They produce a diverse array of both Th1 and Th2 cy-
tokine types [50, 51]. Orbital fibroblasts express all three 
isozymes of hyaluronan synthase [52] and the upstream 
enzyme, UDP-glucose dehydrogenase [29, 30]. Those en-
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zymes are involved in the biosynthesis of the glycosami-
noglycan and hyaluronan. Orbital fibroblasts, especially 
those from patients with GO, consist of heterogeneous 
cell populations and are divided into subsets based on the 
display of the glycoprotein Thy-1 [44, 53, 54]. In regard 
to the expression of this surface marker, cells can differ-
entiate into mature adipocytes (Thy-1–) and those that can 
eventually form myofibroblasts (Thy-1+). Thy-1 expres-
sion may be, at least in part, responsible for expansion of 
the orbital connective tissue contents and its extensive fi-
brosis. However, many studies conducted in order to char-
acterise orbital fibroblasts neglected their phenotypic and 
functional diversity.

Douglas et al. explored the cellular makeup of the orbit 
in GO [55]. They identified the increased levels of a sub-
set of circulating CD34+ cells that infiltrate the orbit in 
GO and express high levels of functional TSHR. Fibro-
cytes are CD34+ cells that derive from the bone marrow. 
Normally, fibroblasts inhabiting orbital connective tissue 
are uniformly CD34–. Fibrocytes in GO appear to partially 
replace the fibroblasts. They can differentiate into either 
fat cells or myofibroblasts, which may be responsible for 
tissue remodelling patterns found in GO [55]. It seems that 
fibrocytes also infiltrate the thyroid in GD and may be an 
important link between the orbit and the thyroid.

TSHR
TSHR plays major role in the hyperthyroidism as-

sociated with GD. However, the role of the stimulatory 
antibodies directed against TSHR, often referred to as 
thyroid-stimulating antibodies (TSI or TSAb), in initiat-
ing or sustaining orbital tissue remodelling in GO has not 
been well established yet. A lot of circumstantial evidence 
suggests that TSHR and TSAb may be involved. General 
correlation appears to exist between levels of TSAb and 
the severity and activity of GO [56-58]. Higher cell surface 
levels of TSHR are found in orbital tissues from active 
disease and are displayed by orbital fibroblasts from these 
patients, especially following induction of adipogenesis 
[59]. These findings generally support the participation of 
TSHR. Detection of TSHR mRNA in orbital tissues was 
first reported by Feliciello et al., who found the transcript 
in healthy tissues and those coming from GO [60].

Parmentier et al. accomplished molecular cloning of 
the TSHR gene [61]. They isolated a 4.9 kb cDNA en-
coding a 744 amino acid peptide. The receptor protein 
represents a classical seven-membrane spanning, rhodop-
sin-like, G-protein-coupled protein. Its structure has been 
solved with crystallisation studies by the laboratory group 
of Reese-Smith [62, 63]. TSHR is a family member of cell 
surface receptors that includes luteinising hormone (LH) 
and follicle-stimulating hormone (FSH) [64]. It compris-
es a multimeric structure [65, 66] with the ligand-binding 
site located in the amino-terminus [67]. One gene encodes 

the receptor, which is translated into a single peptide un-
dergoing cleavage into constituent subunits connected 
by a disulphide bond. The extracellular TSHR domain is 
cleaved by a cell surface metalloproteinase, the identity 
of which remains uncertain [68]. This cleaved fragment is 
particularly immunogenic, and its characteristics are likely 
to proximally underlie generation of TSI. The multimeric 
structure of the TSHR drives affinity maturation of the 
pathogenic autoantibodies in GD.

Helper T cells recognise TSHR peptides, leading to 
their activation and ligation of TSHR by TRAb, which 
induces secretion of chemokines and inflammatory cyto-
kines, adipogenesis, and increased hyaluronic acid produc-
tion. Enhanced production of connective tissue results in 
extraocular muscle enlargement and orbital fat expansion 
[69] (Fig. 1).

Levels of TSI correlate with the severity and clinical 
activity of the disease [57, 58] and high TRAb levels in 
early GO predict a poor prognosis [59].

Many investigations provide data showing that TSHR 
mRNA and protein are detectable in both GO and normal 
orbital tissues and fibroblast cultures. However, consid-
erably higher levels of TSHR are found in GO cells [69-
71]. It has been also proven that levels of TSHR mRNA in 
GO orbital adipose tissue correlate with the activity of the 
disease, indicating a potential role of TSHR in the devel-
opment of the disease [72].

Zhang et al. introduced bovine TSH or two different 
monoclonal TRAbs into normal and GO fibroblast cultures 
and demonstrated increased HA production in normal fi-
broblast cultures, but not in GO fibroblasts [73].

They also introduced an activating mutant TSHR into 
normal and GO orbital fibroblasts and observed enhanced 
adipocyte differentiation [73].

Nevertheless, transfecting GO orbital fibroblasts with 
an activating mutant TSHR leads to elevated HA produc-
tion due to induction of hyaluronan synthases 1 and 2, 
compared with control transfected cells.

In another study, conducted by Kumar et al., of GO or-
bital fibroblasts treated with either bovine TSH or a potent 
stimulatory TSI (termed M22), elevated levels of cAMP, 
pAkt, and HA were found [74]. These effects could be 
blocked by co-treatment with a small molecule TSHR an-
tagonist, termed C-1 [75]. Activation of this receptor leads 
to changes in the cellular characteristic of GO. 

However, these associations between levels of an-
ti-TSHR and disease activity/severity do not constitute 
proof of a causal relationship. Currently, a potential role 
of additional molecular determinants such as IGF-1R is 
being considered as a participant in the disease process [8].

The signalling downstream from TSHR is complex. 
It involves several distinct pathways known to crosstalk. 
Better apprehension of post-receptor signalling would al-
low identification of additional therapeutic targets. These 
include the potential role of proteins binding with TSHR. 
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Among these are the β arrestins [76, 77], versatile adap-
tor proteins that are involved in receptor internalisation 
and desensitisation, assisting receptor uncoupling from 
downstream targets, and facilitating receptor interactions 
with clathrin-coated pits. β-arrestins are capable of protein 
complex formation, which is thought to be involved in the 
transduction of post-receptor signalling [76, 77].

Crosstalk between TSHR and IGF-IR
IGF-I and its cognate receptor, IGF-IR, are family 

members of a group of molecules that play critical roles in 
diverse biological functions such as growth, cellular me-
tabolism, and immunity [78]. IGF-IR is a tyrosine kinase 
receptor that spans the plasma membrane and connects 
with several down-stream signalling pathways, taking part 
in the regulation of many target genes [79, 80]. Pritchard 
et al. noticed that GD-IgGs, but not those from healthy 
controls, could upregulate the expression of chemokines 
in orbital fibroblasts [81]. That study indicates that IGF-
IR was over-expressed in orbital fibroblasts from patients 
with GD. Moreover, the FRAP/Akt/mTOR/p70S6k path-
way was involved in downstream signalling and the ac-
tivation by GD-IgG of chemokine expression in orbital 
fibroblasts from these patients, including IL-16 and regu-
lated on activation, normal T cell expressed and secreted 
(CCL5, RANTES) [82]. The specific antagonist 1H7 could 
attenuate activation by rhTSH and IgGs of the downstream 
kinase Erk. 

The same results could be achieved by transfecting 
cells with a dominant negative IGF-IR [81]. It has been 
many years since Ingbar et al. investigated the relationship 
between the TSHR and IGF-IR pathways. They found that 
IGF-I could enhance or abrogate certain actions of TSH in 
cultured thyroid epithelial cells [83]. However, the molec-
ular basis for the interactions between the two pathways is 
still is still uncertain. Tsui et al. reported that TSHR and 
IGF-IR form a physical and functional complex in thyroid 
tissues, orbital fat, and in fibroblasts [60]. IGF-1R, just like 
TSHR, can be activated by TSI viaPI3K/ACT pathways, 
upregulating peroxisome proliferator-activated receptor-γ 
(PPAR-γ) expression, differentiation, and proliferation of 
adipocytes and enhancing adipogenesis [84]. This same 
group found what appears to be a fragmentation of IGF-IR 
into polypeptide sequences containing the alpha and beta 
subunits [85]. IGF-IRβ co-localises with TSHR and seems 
to mediate the signalling initiated by TSHR, which leads 
to downstream activation of the Erk and FRAP/mTor/Akt/
p70s6k pathways [60]. The actions of TSH, TSI, IGF-I, 
and GD-IgG can be attenuated with IGF-IR inhibiting anti-
bodies. A confirmatory study of TSHR-initiated signalling 
on IGF-IR was conducted recently by Krieger et al. [86]

Teprotumumab, the fully human IGF-IR blocking anti-
body, is a newly developed therapy for GD and GO.

This antibody has recently been evaluated for safety 
and efficacy in the treatment of moderate to severe active 
GO in a phase 2 double-masked, placebo-controlled, pro-
spective, multicentre trial [67]. It has been shown to be 
capable of blocking the actions of IGF-I and both TSH 
and pathogenic TSIs in bone marrow-derived fibrocytes 
in vitro [87]. There is still the unsolved issue of the poten-
tial for side effects. These can occur frequently because of 
the wide array of normal physiological function that this 
pathway is involved in regulating, including growth and 
metabolism. The structural similarities shared by IGF-IR 
and the insulin receptor make the selective modulation of 
each difficult but not impossible. 

Newly developed molecules for directly 
interrupting TSHR function

Development of small molecules as cell-surface receptor 
antagonists can offer specific advantages as potential thera-
peutics. The inverse TSHR agonist NCGC00161856 inhibits 
in a competitive way basal and TSH-dependent cAMP gen-
eration in HEK-EM 293 cells [88]. The molecule is able to 
attenuate constitutive expression of TSHR, thyroperoxidase, 
thyroglobulin, and sodium iodide symporter in thyroid epi-
thelial cells and is one of the first discovered small molecule 
reverse agonists for TSHR. It was also shown that the ago-
nist could inhibit basal levels of cAMP, pAkt, and hyaluro-
nan accumulation in orbital fibroblasts [89]. Other studies, 
also in orbital fibroblasts, have revealed that the antagonist 
NCGC00229600 could block the actions of TSH and M22, 
the monoclonal mAb TSHR agonist [90]. NCG00229600 at-
tenuated the increased cAMP generation provoked by M22 
and TSH in orbital fibroblasts that had been differentiated 
into adipocytes.

Conclusions
Nowadays, anti-inflammatory treatment is mainly 

based on corticosteroids. Better understanding of GO 
pathogenesis leads to the development of new therapeutic 
options, e.g. biologic agents (rituximab, infliximab). There 
are some reports with small series of patients, in which 
biologic agents were used off-label. This approach showed 
some promising results. However, there is still much that 
needs to be investigated.

The authors declare no conflict of interest.
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