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Abstract

Butyrophilins belonging to the immunoglobulin superfamily are new immune system regulators 
because they are present on lymphocytes, dendritic cells, monocytes, macrophages, neutrophils and 
eosinophils, and they exert a stimulatory and (or) inhibitory effect on them. The role of butyrophilins is 
associated and results from their similarity to the regulatory B7 protein family involved in the modula-
tion of immune phenomena. Butyrophilins are glycoproteins built of two extracellular immunoglobulin 
domains, stabilized with disulfide bonds: constant IgC, and variable IgV and a transmembrane region. 
Most of these proteins contain a conserved domain encoded by a single exon – B30.2, also referred to 
as PRYSPRY. In humans, the family of butyrophilins includes 7 butyrophilin proteins, 5 butyrophilin-like 
proteins and the SKINT-like factor. Butyrophilins have been also demonstrated to play a role in various 
infections, e.g. tuberculosis or diseases that include sarcoidosis, systemic lupus erythematosus, rheuma-
toid arthritis, genetic metabolic diseases, ulcerative colitis, cancer and kidney disease.
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Introduction
Infections, autoimmune diseases or cancers can stimu-

late or inhibit an immune response, thus studies on these 
issues focus on understanding the molecular basis of T-cell 
reactivity, including their activation, which has been linked 
to two independent signals, i.e., TCR receptor present on the 
surface of T-cells (signal I) and co-stimulatory molecules, 
expressed abundantly on antigen-presenting cells (APC) 
(signal II) [1, 2]. These important elements regulating T-cell 
responses are some of the immunomodulatory molecules 
best described so far – proteins of the B7 family [3], which 
stimulate the immune response of T lymphocytes, e.g. B7.1 
(CD80), B7.2 (CD86) and ICOS (inducible T-cell co-stim-
ulator) molecules [4] as well as suppressing molecules, such 
as PDL-1 (PD1 ligand), PDL-2 (PD2 ligand), B7-H3 (B7 
homolog 3) or B7-H4 (B7 homolog 4) [5-8]. Butyrophil-
ins are a recently discovered large family of proteins within 
the members of the immunoglobulin superfamily which are 
analogous in this respect to the B7 protein family [9].

Structure and classification  
of butyrophilins 

The first butyrophilins were described in the 1980s as 
proteins present in epithelial cells of the mammary gland, 
which are involved in lactation – particularly in the secre-

tion, formation and stabilization of fat balls in cow’s milk 
[10]. Butyrophilins, similarly as the B7 family of regula-
tory proteins, are glycoproteins built of two extracellular 
immunoglobulin domains, stabilized with disulfide bonds: 
constant IgC, and variable IgV and a transmembrane re-
gion (Fig. 1). 

In addition, most butyrophilins contain a conserved 
domain encoded by a single exon – B30.2, also referred 
to as PRYSPRY [4]. Among butyrophilins (BTN), three 
subfamilies BTN1A, BTN2A and BTN3A have an identi-
cal structure, although the BTN3A2 protein has no B30.2 
domain [3, 4, 9, 11-13]. Butyrophilin-like proteins also 
have a conventional structure composed of two immuno-
globulin domains and the B30.2 domain [3, 4, 9, 11-13]. In 
turn, SKINT proteins have three transmembrane regions, 
however, they do not contain the B30.2 domain [4], and 
some of them are additionally lacking one of the immuno-
globulin domains – IgV or IgC [12]. 

In humans, the family of butyrophilins includes 7 butyr-
ophilin proteins (BTN1A1, BTN2A1, BTN2A2, BTN2A3, 
BTN3A1, BTN3A2, BTN3A3), 5 butyrophilin-like proteins 
(BTNL) (BTNL2, BTNL3, BTNL8, BTNL9, BTNL10) 
and the SKINT-like factor (SKINTL – selection and up-
keep of intraepithelial T-cells) [9, 11, 14], while in mice, 
11 proteins of this family have been described: BTN1A1, 
BTN2A2, BTNL1, BTNL2, BTLN4, BTNL5, BTNL6, 
BTNL7, BTNL9, BTNL10 and SKINTL, which differ in 
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humans and mice [13]. It was shown that seven human bu-
tyrophilin genes are arranged in three phylogenetic groups, 
i.e., BTN1, BTN2 and BTN3, which are located on the short 
arm of chromosome 6 (6p22.1) in the region of MHC class 
I molecules, and they determine three butyrophilin subfam-
ilies mentioned above (BTN1, BTN2 and BTN3) [11, 14]. 
It was demonstrated that the BTN1 subfamily is encoded by 
a single gene: BTN1A1, while BTN2 (BTN2A1, BTN2A2, 
BTN2A3) and BTN3 (BTN3A1, BTN3A2, BTN3A3) sub-
families have three genes each [4, 11]. The proteins of these 
three subfamilies, i.e., BTN1, BTN2 and BTN3 show a high 
homology of amino acid residues reaching up to 50%, even 
though this homology between BTN2 and BTN3 subfamily 
is sometimes more than 80% [14, 15]. Similarly as genes 
coding for butyrophilins, the genes of butyrophilin-like pro-
teins are grouped in three clusters, namely: BTNL3, BTNL8 
and BTNL9, which in humans are located on the long arm 
of chromosome 5 (5q35) [4]. SKINT proteins belonging to 
the family of butyrophilins [16] are determined in humans 
by three groups of genes, i.e., Skint 1-6, Skint 7/8 and Skint 
9-11 [12]. It has also been proven that mRNAs encoding 
BTN and BTNL proteins are present in T and B lympho-
cytes, neutrophils, eosinophils as well as on the bone mar-
row, brain, lung, liver, small intestine and colon cells [3, 11]. 

Butyrophilins, cells of the immune system 
and infections, and pathological states

Butyrophilin importance in the body is associated with 
their stimulatory and inhibitory effects on cells of the im-
mune system. An example can be the BTN2A1 butyro-
philin, which is one of the few among these proteins that 
binds to DC-SIGN – pectin type C receptor (DC-specific 

ICAM3-grabbing non-integrin, also referred to as CD209), 
which is present on monocytes and dendritic cells and acts 
as an internalization receptor of HIV-1, HCV, but also 
other pathogens [15]. It was described that BTN1A1,  
BTN2A2, BTNL2 proteins of the butyrophilin family 
exerted an inhibitory effect on the proliferation of CD4+ 
T-cells through the cell cycle arrest and suppressed the 
proliferating activity of CD8+ T-cells [17-19]. These 
proteins also reduce the expression of a variety of cyto-
kines associated with T-cell activation, including IL-2 and 
IFN-γ [20]. Stefferl et al. [21] demonstrated that the ad-
ministration of recombinant BTN1A1 reduced T-cell ac-
tivation, thereby inhibiting the development of diseases, 
such as experimental autoimmune encephalomyelitis in 
rat models. These investigators [21] suggested that due to 
the similarity of this butyrophilin to myelin oligodendro-
cyte glycoprotein, it might also mediate the modulation of  
T lymphocyte activation. In turn, Swanson et al. [22] and 
Amman et al. [20], studying BTNL2 in vitro, demonstrated 
that this protein activated the expression of Foxp3 factor 
(forkhead box P3) – a key transcription factor involved 
in the regulation of immune response, which is respon-
sible for the formation of regulatory T-cells. This protein 
also delays the signal from B7 proteins, as a result of 
decreased proliferation of T-cells, leading to the inhibi-
tion of proteins, such as IL-2, IL-13, IL-17 or IFN-γ [22].  
The BTNL2 butyrophilin also inhibits the Akt activity  
(serine-threonine protein kinases), and maintains the activ-
ity of FOXO1 factor (forkhead box protein O1), thereby 
increasing the expression of Foxp3 factor [22]. In the case 
of the BTN3A1 protein, it was demonstrated in humans 
that it inhibited T-cell proliferation and cytokine pro-
duction by Th1 lymphocytes by blocking the level of the 

Fig. 1. Structural organization of butyrophilins and B7 family
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cFLIP controller (cellular FLICE (FADD-like IL-1β-con-
verting enzyme) inhibitory protein), which led to the si-
lencing of caspase-8, which is required for the activation of 
NF-κB transcription factor [23]. The BTN3A1 butyrophil-
in, known as CD277 receptor, is stabilized in the myeloid  
dendritic cells and macrophages by vascular endotheli-
al growth factor (VEGF), and by the CCl3 (chemokine  
ligand 3) chemokine in ovarian cancer cells [23, 24].  
The BTNL8 protein also plays an important role among 
butyrophilins, and it is expressed on neutrophils, T lym-
phocytes and myeloid lineage cells [25]. This butyrophilin, 
in the presence of the anti-CD3 protein, binds T-cells, and 
administered as BTNL8-Ig, increases mainly the prolifer-
ation of CD4+ and CD8+ T-cells, and enhances the syn-
thesis of IFN-γ, TNF-α, IL-8 and IL-10 [25]. In turn, the 
BTN3A2 butyrophilin exhibits an immune co-stimulatory 
effect on immune processes in ovarian cancer in women, 
as the high mRNA level of that butyrophilin improves 
prognosis in epithelial ovarian cancer (EOC) [26]. It was 
also shown that the expression of this protein in ovarian 
cancer was positively correlated with intraepithelial infil-
tration of CD4+ and CD8+ T-cells [27], thus suggesting 
that it may be a good prognostic marker in EOC because 
it affects the modulation of immune cells, and hence it is 
involved in the immunity against this cancer [27]. 

Butyrophilins also affect Vγ9Vδ2 T lymphocytes – the 
main population of T-cells with the γδ receptor in human 
blood, and these cells comprise 1-10% of all T-cells in 
healthy individuals, in particular in the intestinal mucosa 
and mucosal tissues and liver [28-30]. These lymphocytes 
are characterized by a high reactivity of small organic py-
rophosphate molecules [28] and show a strong reaction to-
wards tumor cells [23] and pathogens, such as Plasmodium 
falciparum, Mycobacterium (M.) tuberculosis and M. lep-
rae [31-34]. It was shown that during the biosynthesis of 
isoprenoids, e.g. HMBPP ((E)-4-hydroxy-3-methyl-but-2- 
enyl, phosphate), which are produced via MEP (2-C-meth-
yl-D-erytrtiol-4- phosphate) by Gram positive and Gram 
negative bacteria and pathogens and parasites, the detection 
of phosphoantigens occurred through BTN3A, which also 
activated Vγ9Vδ2 T-cells [4, 28, 35-37]. Although it was 
not fully explained how this process occurred, two mod-
els explaining the interactions were proposed. The first 
model assumes that BTN3A, as a molecule that presents 
an antigen, captures and presents phosphoantigen on the 
surface of Vγ9Vδ2 T-cells that recognize this complex 
directly by TCR [38]. The second model suggests that  
BTN3A1, as the only one of the three BTN3 isoforms is 
able to activate Vγ9Vδ2 lymphocytes [39]. On the other 
hand, other authors [40] indicated that all three isoforms 
of this butyrophilin are required to activate these cells, and 
hence Sandstrom et al. [33] suggested that it was condi-
tioned by the B30.2 domain present in butyrophilins, which 
“senses” the increased concentration of phosphoantigens so 

that it can serve as a “sensor” to detect changes in the level 
of isoprenoid metabolites [33]. 

Butyrophilins, in addition to the effects on T-cells, 
also affect other cells of the immune system. It was prov-
en that BTN3A expressed on the surface of monocytes 
and dendritic cells caused their increased survival by the 
inhibition of apoptosis; they also increased the expression 
of molecules of this protein on these cells, thereby acti-
vating the synthesis of IL-1, IL-8 and IL-12 [41]. It was 
shown that the activation of monocytes and DC cells by 
the addition of BTN3A could also increase the immune 
signaling through TLRs (Toll-like receptors), which might 
suggest that the subfamily of these butyrophilins enhance 
proinflammatory signals [38]. In addition, it was suggested 
that BTN3A butyrophilins expressed on NK cells, but also  
BTN3A2 butyrophilins, contributed to the increased syn-
thesis of IFN-γ by these cells [42]. It was demonstrated 
that butyrophilins in the presence of IL-2 and IL-15 acted 
on local immune responses, including proliferation and 
IEL (intraepithelial lymphocyte) cell activity in the intesti-
nal mucosa in mice [7]. In addition, it was reported that bu-
tyrophilin-like proteins regulated the expression of CD25 
and caused increased secretion of IFN-γ by IEL cells [7]. 

In addition to the involvement of butyrophilin family 
proteins in the experimental autoimmune encephalomyeli-
tis [20] as well as genetic metabolic diseases, diabetes, and 
cancer [14], their role in infections (tuberculosis, leprosy, 
Plasmodium sp.) was also demonstrated [32-34]. The par-
ticipation of butyrophilins was also described in sarcoidosis 
[43, 44] as well as in other conditions [43, 45-48]. In sar-
coidosis it was shown that the mutant BTNL2 protein could 
not localize in the cell membrane and lost its inhibitory 
function, which led to abnormal activation of T-cells, and 
thereby to the inflammation in this disease. Their role was 
also described in humans [43] in the course of myositis, as 
during this disease an increased rate of BTNL2 butyrophilin 
mutation was observed [43]. A correlation was also demon-
strated in humans between the BTNL2 polymorphism and 
ulcerative colitis [48], rheumatoid arthritis [47], systemic 
lupus erythematosus [46] and chronic renal diseases [46], 
which showed that this protein was involved in these patho-
logical conditions. Despite the discussed examples of the 
participation and role of the BTNL2 butyrophilin in patho-
logical states [46], observations in this field are still required 
to better elucidate the interaction between butyrophilins, in-
cluding the BTNL2 polymorphism and various pathological 
conditions in mammals. 

Conclusions
Butyrophilins, as a large family within the immuno-

globulin superfamily, similarly as the B7 protein family, 
are present on many cells of the immune system and mod-
ulate their action. A picture of their effect both in terms 
of inhibiting and increasing the activity of these cells by 
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these proteins, mainly T lymphocytes, indicates that there 
are new possible modulation pathways, and hence new in-
teractions between the components of natural and acquired 
immunity in mammals both in physiological and patholo
gical conditions.
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