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Introduction

Inflammation is characterized by accumulation,

adhesion, and activation of neutrophils and macrophages,

which results in the destruction of inflamed tissue. This

effect is thought to be mediated in part by the production

of reactive oxygen species (ROS), a group of reactants

that includes superoxide (O2
–), hydrogen peroxide (H2O2)

and hypochlorous acid (HOCl) [1]. In contrast to O2
– and

H2O2, which do not exhibit significant reactivity with

biological compounds, HOCl, a highly reactive oxidant,

readily reacts with primary amines to generate long lived

N-chloramines (e.g. taurine monochloramine) [2, 3].

Although N-chloramines have a lower oxidizing potential

than HOCl, their much longer effective lifetime would

enable them to contribute in the regulation of

inflammatory response. It has been shown that taurine

chloramine (TauCl), the primary neutrophil chloramines,

has strong anti-inflammatory and immunoregulatory

properties [4-7]. 

Determining the ability of HOCl to contribute in the
pathogenesis of inflammatory processes associated with
rheumatoid arthritis (RA) is highly dependent on
determining the relevant target(s). The most likely protein
target for neutrophil oxidants in RA seems to be collagen
type II (CII), the major component of articular cartilage [8].
Davies et al. reported that HOCl (>1.0 mM) was required
to cause direct fragmentation of CII. In addition, HOCl
increased the degradation of collagen by collagenase [9,
10]. Much less is known whether the oxidative modification
(chlorination) of collagen affects its immunogenic
properties. Recently we have shown (manuscript in
preparation) that collagen chlorination abolished its
arthritogenic capacity and diminished the production of IgG
antibodies specific to native collagen. On the other hand,
cleavage of heat denaturated CII by neutrophil gelatinase
B reveals enzyme specificity, post-translational
modifications of the substrate, and the formation of remnant
epitopes in rheumatoid arthritis [11]. All these data indicate
that protein modification by oxidation (e.g. chlorination)
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Abstract
Hypochlorite (HOCl/OCl–), a product of activated neutrophils, significantly contributes to protein

oxidation which occurs at a site of inflammation. Proteins modified by chlorination changed their
biological activity such as enzymatic activity, resistance to proteolytic cleavage and immunogenecity.
We previously reported that ovalbumin (OVA) modified with HOCl was processed and presented more
efficiently than native OVA. Recently we have shown that HOCl, at the same concentrations, diminished
arthritogenic and immunogenic properties of collagen type II (CII). In this study we evaluate the capacity
of CII and OVA modified with HOCl to stimulate antigen-specific immune response to epitopes present
on native proteins. Chlorination of OVA with 1mM HOCl results in its enhanced immunogenic properties.
Chlorinated OVA more effectively stimulated OVA-specific T cell hybridoma and IgG production than
native OVA. In contrast to that 3 mM HOCl completely abolished the capacity of CII to stimulate B cell
response specific to native form of collagen but retained its ability to stimulate antigen specific T cells.
Thus, oxidative protein modification with HOCl will result in different biological effect depending on
the presence of target molecules in functionally active center of chlorinated proteins.
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alter immunogenic capacity of proteins and in the case of

self-proteins it may result in breaking of an autotolerance

and induction of autoimmunity.

The aim of the present study was to evaluate the effect
of chlorination of chicken collagen type II (CII) and chicken

albumin (OVA) on their capacity to induce B and T cell

response specific to epitopes of native form of the antigens.  

Materials and methods

Mice

Male DBA/J mice between 8-12 weeks of age, from the

breeding unit of Department of Immunology, Jagiellonian

University Medical College, Kraków, Poland, were used.

Protein chlorination with HOCl

Samples of chicken albumin (OVA) or chicken collagen

type II (CII) (both from Sigma, St. Louis, MO) dissolved at

a concentration of 2 mg/ml in 0.2 M phosphate buffer (pH

7.4), were incubated with 1, 3 or 5 mM HOCl/OCl– at room

temperature for 2 hours. To stop the reaction samples were

treated with stoichiometrical amount of tiosulfate. To remove

excess of free HOCl and tiosulfate, samples of chlorinated

proteins were dialyzed for 24 hours in 0.2 M phosphate

buffer at 4oC. 

Immunization

Primary immunization: Mice were immunized

intradermaly with 200 µg of either native (OVANAT, CIINAT)

or chlorinated (OVAHOCl, CIIHOCl) proteins emulsified in

complete Freund’s adjuvant (CFA) (Sigma). The same

protocol was used for OVA and CII immunization.

Booster immunization: On day 21 after the first

immunization mice were injected subcutaneously with 100

µg of native protein either alone (suboptimal

immunization), or in CFA. In some experiments mice

received only primary immunization.

Proliferation assay

For proliferation assay, the draining lymph nodes

were taken 12 days after the primary immunization. The

LN cells were cultured in 96-well, flat-bottom tissue

plates at a concentration 2x105/well in RPMI 1640

medium (Gibco BRL, Gaithersburg, MD) supplemented

with 5% FCS (Gibco BRL), 20mM HEPES, 20 mM L-

glutamine, 5x10-5M 2-mercaptoethanol (all from Sigma)

and antibiotics. After 72h incubation (at 37oC in 5%

atmosphere of CO2) in the presence of different

concentrations of either OVA or CII, the cells were labeled

with 1 µCi/well 3H-thymidine for 18-20 hours and then

harvested onto a glass fiber filter mat and measured in a

solid scintillator by β-counter (Trilux 1 Wallac, Turku,

Finland - a gift from The Wellcome Trust Foundation).

Measurement of serum IgG specific to OVA
and CII by ELISA

Mice were anesthetized and bled on days 12 or 21 after
primary immunization and additionally 7 days after
booster immunization. Serum level of IgG antibodies
against native CII or native OVA was measured using a
standard ELISA assay.

Briefly, individual serum samples were stored at – 80oC
until they were used for the ELISA. Microtitter plates
(Corning, NY) were coated overnight with 5 µg/ml of
collagen type II (acid soluble) or ovalbumin (both Sigma,
Steinham, Germany) in phosphate buffered saline (PBS) at
4oC. Non specific binding was blocked with 4% bovine
serum albumin (BSA) in PBS at room temperature for 1 hour.
Diluted serum samples (in 1% BSA in PBS) were added and
incubated for 1 hour at room temperature. The plates were
then incubated with biotinylated goat anti-mouse IgG
antibody (Sigma) for 45 minutes at room temperature.
Horseradish peroxidase (HRP) conjugated streptavidin
diluted 1:1000 in 1% BSA/PBS was added and plates were
incubated for 45 minutes at room temperature. Then OPD
(o-phenylenediamine dihydrochloride) (Sigma) was used as
a substrate (5 mg of OPD in 10 ml of phosphate-citrate buffer,
pH = 5.0) and incubated with 40 µl of 30% H2O2 for 30 min
at room temperature. The reaction was stopped with 3M
H2SO4. Optical density was measured at 492 nm in a plate
reader (PowerWaveX, Bio-Tek Instruments, Winooski, VT -
gift from The Foundation for Polish Science).

Activation of OVA- specific T cell hybridoma

APCs (A-20-2J – H-2d positive B lymphoma line)
(5x105/well) were preincubated in 96-well, flat-bottom tissue
plates at different concentrations of native or modified OVA
in RPMI 1640 medium (Gibco BRL, Gaithersburg, MD)
supplemented with 5% FCS (Gibco BRL). After 2 hours of
the preincubation 2x105/well of OVA-specific T cell
hybridoma (DO11.10 – H-2d restricted) were added and co-
cultured for additional 24 h. Next day supernatants (SN) were
removed, collected and frozen in -20oC for a bioassay. The
activity of interleukine-2 (IL-2) produced by the activated T
cell hybridoma was measured in the SN using IL-2-dependent
cytotoxic T lymphoma line cells (CTLL cells), as described
previously [12]. SN from APCs co-incubated with OVA-
specific T hybridoma without antigen was used as a control.

Statistical analysis

Results are expressed as mean +/- SEM. Statistical
significance was determined by the Student’s t-test and
differences were regarded as significant at p<0.05.

Results

IL-2 release from OVA-specific T cell hybridoma
stimulated with native and chlorinated OVA.

Previously we have shown an enhanced
immunogenecity of OVA chlorinated (OVAHOCl) with 
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Fig. 2. In vitro proliferation of OVA-specific LN-cells taken from mice immunized either with native or chlorinated OVA.
Mice were immunized with either native (OVANAT) or chlorinated (OVAHOCl-1 = OVA chlorinated with 1 mM HOCl; OVAHOCl-3 =
OVA chlorinated with 3 mM HOCl) ovalbumin in CFA, as described in Methods. For proliferation assay the draining lymph
nodes were taken 12 days later. LN-cells were cultured at the presence of different concentrations of OVANAT. Results represent
one of three independent experiments

Fig. 1. IL-2 release from OVA-specific T cell hybridoma stimulated with native or chlorinated OVA.
APCs (A20-J B lymphoma line) were incubated with either native (OVANAT) or chlorinated (OVAHOCl) ovalbumin. After 2 hours
OVA-specific T cells (DO-11-10 T cell hybridoma) were added. After additional 24 hours supernatants were collected and the
level of IL-2 produced by activated OVA-specific T cell hybridoma was measured (for details see Materials and Methods).
Results are expressed as a mean +/- SEM from four independent experiments (* p<0.01 OVANAT vs. OVAHOCl)
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HOCl in the range 1.0 - 7.0 mM. Recently we have

published that CII chlorinated with HOCl at concentrations

above 1.0 mM lost its arthritogenic capacity. In this study

to compare the influence of chlorination on OVA and CII

immunogenecity, both proteins were modified with HOCl

at concentrations of 1.0 and 3.0 mM.

As shown in Fig.1, OVA modified by chlorination

stimulated the production of IL-2 more effectively than the

native protein. The enhanced immunogenic properties of

HOCl-treated OVA were observed more clearly with

suboptimal doses of antigen (<0.5 mg OVA/ml).

In vitro proliferation of Ag-specific LN-cells taken from

mice immunized either with native or chlorinated antigens.

To determine immunogenecity of in vivo injected

chlorinated antigens (OVA and CII), a proliferation assay

was set up with the draining lymph node cells taken from

immunized mice and restimulated in vitro with

corresponding antigens. LN-cells taken from mice

immunized with OVAHOCl-1 (OVA chlorinated with 1mM

HOCl) showed stronger proliferative response than those

taken from mice immunized with native OVA. No

differences were found between mice immunized with

native OVA and OVAHOCl-3 (OVA chlorinated with 3 mM

HOCl) (Fig. 2.).

In contrast to that, LN-cells of mice immunized with

collagen modified by HOCl (CIIHOCl-1 and CIIHOCl-5)

responded with a stronger proliferative response than LN-cells

of mice immunized with native collagen, as shown in Fig. 3.

Antibody responses in mice immunized with 

HOCl-modified antigens.

Differential effect of chlorination on OVA and CII

capacity to stimulate in vivo an antigen specific humoral

immune response was observed. Serum IgG titer to native

antigens (OVA, CII) was determined at the same timepoint

after primary immunization as the proliferation assay was

performed. As shown in Table1A, OVA modification with

lower concentration of HOCl (OVAHOCl-1) induced a twofold

increment of the IgG antibody response to native, unmodified

OVA as compared with IgG production after immunization

with native OVA (OVANAT). On the contrary, chlorination

with higher concentration of HOCl (OVAHOCl-3) caused very

strong decrease of IgG titers to OVANAT.

Fig. 3. In vitro proliferation of CII-specific LN-cells taken from mice immunized either with native or chlorinated collagen.
Mice were immunized with either native (CIINAT) or chlorinated (CIIHOCl-1 = CII chlorinated with 1 mM HOCl; CIIHOCl-5 = CII
chlorinated with 5 mM HOCl) chicken collagen type II in CFA, as described in Methods. For proliferation assay the draining
lymph nodes were taken 12 days later. LN-cells were cultured at the presence of different concentrations of heat denaturated
collagen II (CIIDEN). Results represent one of five independent experiments
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The effect of HOCl on ability of collagen to stimulate
the production of IgG specific to native CII (CIINAT) differ
from that observed after chlorination of OVA. Chlorination
of CII, decreased in a dose dependent manner, its capacity
to stimulate production of IgG anti-CIINAT (Table 1B).
Serum IgG titer to CIINAT after the immunization with
CIIHOCl-1 was 3 times lower than IgG titer after the
immunization with CIINAT. After immunization with
CIIHOCl-3 the level of IgG anti-CII-NAT was similar to that
observed in naive mice. It suggests that CIIHOCl-3 did not
stimulate antigen specific humoral response, at least to
epitopes of native form of collagen. Surprisingly, primary
immunization with CIIHOCl-3 followed by suboptimal
booster immunization with CIINAT resulted in the production
of IgG anti-CIINAT (Table 2.).

Chlorination of collagen with TauCl or with HOCl in
the presence of taurine did not affect capacity of collagen
to induce the production of IgG specific to native antigen.

Discussion

Oxidation of proteins is a common phenomenon which
occurs at a site of inflammation [13, 14]. It exerts several
potential biological effects on proteins, such as alteration
of enzymatic activity, alteration of susceptibility to
enzymatic digestion and change in immunogenecity [15-
19]. We have previously reported such biological effects
of chlorination on OVA. Chlorination of OVA increased
its susceptibility to proteolysis [20]. Moreover, chlorinated

OVA was a stronger immunogen than the native OVA.
However, the extent of chlorination was critical, as
overchlorinated OVA again became a poorer immunogen
[12, 21-23].

To study immunogenecity of proteins modified by
chlorination we used two experimental models. Firstly, in
vitro chlorinated chicken albumin (OVA) was incubated
with APC cells and presented to OVA specific T cells. The
chlorination of OVA by HOCl facilitates its processing
and/or presentation by APC resulting in augmentation of
IL-2 production by OVA-specific T-cell hybridoma [12]. It
was also shown that chlorination facilitates proteolysis by
trypsin and cathepsin D. The latter enzyme is involved in
the processing of protein by APC. Secondly, in vitro
chlorinated bovine albumin (BSA) was conjugated with
trinitrophenyl (TNP) hapten. TNP-specific humoral
response was tested in mice immunized with TNP-BSA
conjugates composed of either native or chlorinated carrier
proteins [22]. It is well known that T-dependent antigens
(e.g. TNP-BSA) are recognized by both hapten-specific B
cells (anti-TNP response) and carrier-specific T helper cells
(anti-BSA response).We have shown that antigens (TNP-
BSA) containing chlorinated carrier stimulate anti-TNP
humoral response more effectively than the native TNP
protein conjugate. The effect was mainly dependent on
increased T cell clonal expansion [22].

Only recently we have shown (manuscript in
preparation) that chlorinated chicken type II collagen lost
its ability to induce collagen induced arthritis (CIA) and to
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Table 1. Antibody responses to native antigens after immunization with antigens modified by HOCl

Antigen IgG anti native Ag

[Units] [%]

A. OVA + CFA IgG anti OVANAT (Day 12)

OVANAT 80±48 100

OVAHOCl-1 160±72 200*

OVAHOCl-3 12±6 15**

B. CII + CFA IgG anti CIINAT (Day 12)

CIINAT 190±82 100

CIIHOCl-1 74±62 39*

CIIHOCl-3 ≤4 –

CIITauCl-3 173±71 91

Naive <4 –

*p<0.05; **p<0.001 in comparison native antigen.
Results are reported using arbitrary defined units [1U = IgG titer 1/100] and are expressed as a mean ± SEM from 5 independent experiments. Each experimental
group consist of 6-10 mice
AgNAT - native protein
AgHOCl-1 – protein chlorinated with 1 mM HOCl
AgHOCl-3 – protein chlorinated with 3 mM HOCl
Ag TauCl-3 – protein treated with 3 mM TauCl



Central European Journal of Immunology 2003; 28(4) 165

Immunogenic properties of collagen and ovalbumin modified by chlorination

Table 2. Priming with chlorinated collagen enhances IgG production to CIINAT after booster immunization with suboptimal

doses of native collagen

Ag administration IgG anti CIINAT [Units]

Priming* Boost** Day Day
(0) (21) (21) (21+7)

∅ CNAT – <4

CIINAT ∅ 512 1024

CIINAT CNAT 512 1024

CIIHOCl-1 ∅ 64 64

CIIHOCl-1 CNAT 64 1024

CIIHOCl-3 ∅ <4 <4

CIIHOCl-3 CNAT <4 256

Results represent one of five independent experiments. Each experimental group consist of 6-10 mice.

* intradermal immunization with 200 µg CII in CFA

** subcutaneous immunization with 100 µg CII without adjuvant

CIINAT – native collagen

CIIHOCl-1 – collagen chlorinated with 1 mM HOCl

CIIHOCl-3 – collagen chlorinated with 3 mM HOCl

trigger the generation of IgG antibodies specific to native
collagen. At the same experimental conditions tolerogenic
properties of chlorinated collagen was retained. It may
suggest that both, arthritogenic and immunodominant B
cell epitopes of native protein were destroyed by
chlorination, while some T cell epitopes were not affected.

In this study, using the same experimental conditions to
modify proteins by HOCl, we compared the effect of
chlorination on immunogenecity of CII and ovalbumin OVA.

Our present results confirm previous observations and
demonstrate that HOCl at concentration ranging from 1.0
- 3.0 mM may enhance capacity of OVA to stimulate OVA-
specific T cells. It indicates that chlorination does not affect
OVA323-339 determinant, which is recognized by DO11-10
cells, an OVA specific T cell hybridoma [12]. On the other
hand, IgG production specific to B cell epitopes expressed
on native OVA was not altered by 3 mM HOCl.

The effect of chlorination of CII was different from that
observed for chlorination of OVA. Chlorination in a dose
dependent manner decreased CII capacity to induce B cell
immune response specific to native form of collagen. This
effect correlated with the structural changes of collagen
observed during chlorination [24]. Mice immunized with
collagen modified by 3 mM HOCl, did not produce IgG
antibodies specific to CIINAT. It may suggest that HOCl at
the concentration 3mM, in which fragmentation of collagen
was observed [24], destroys B cell epitopes of native
protein. Surprisingly, these mice after suboptimal booster
immunization with CII produce IgG anti-CIINAT antibodies.
It indicates, that chlorinated collagen retained some native
epitopes and during primary immunization generated T
helper memory cells specific to carrier epitop(s) present on

native form of collagen. This clonal expansion of T helper
cells results in activation of B cells to produce antibodies
against antigen used in the booster immunization. These
results, together with the results which showed increased
lymph node cells proliferation after immunization with
chlorinated collagen suggest that chlorination preferentially
enhances T cell dependent antigen-specific immune
response. It may be explained by the fact that T cell epitopes
are more resistant to oxidative modification than B cell
epitopes [25]. Further studies are necessary to explain the
effect of HOCl on structure of different proteins (see
differences in immunogenecity of chlorinated OVA and
CII). Primary chlorination affecting chloramine-type
derivative formation, the secondary chlorination producing
stable chlorotyrosine residues, chloramines decomposition
products with carbonyl group formation and generation of
reactive aldehydes should be taken into consideration [18].

Formation of these chlorine moieties in the polypeptide
chain containing antigen epitopes will result in an altered
antigen immunogenecity.

Conclusion

In conclusion, our present and previous studies,
concerning the role of MPO-halide system in modification
of the immune response showed that oxidative modification
of proteins by HOCl may alter their biological functions
including their resistance to proteolytic cleavage,
immunogenecity and pathogenecity. Chlorination will affect
distinct proteins in different ways depending on the
presence of target functional groups (-NH2, -SH, -S-S,
>C=O, tyrosine, tryptophan) [20, 21]. More generally, our
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study provides further evidence for a role of neutrophils in
modulation of adaptive immunity. As neutrophils are the
first cells at a site of acute inflammation, the products they
release (HOCl, TauCl) have the capacity to influence
antigen immunogenecity, APC function and the subsequent
function of effector T cells. Further studies are necessary to
estimate the role of chlorination of proteins (tagging of
autoantigens) in etiopathogenesis of autoimmune diseases
such as rheumatoid arthritis.
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