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Limbal epithelial stem cell niche
The cornea is the unvascularised refractive element of

the eye responsible for approximately two-thirds of its total
optical power. Its integrity and transparency is essential for
proper functioning of the visual system. The cornea consist
of five layers: the outermost stratified squamous epithelium,
the Bowman’s membrane, the stroma accounting for about
90% of its thickness, the Descemet’s membrane and the
innermost endothelium actively pumping water out of the
stroma. The limbal epithelial stem cells (LESCs) reside in
the basal layer of the transition region between the corneal
and conjunctival epithelium which is referred to as the
limbus [1, 2]. The stem cell niche is considered to be
located in the limbal palisades of Vogt which are radially
pointed stromal ridges intersected with epithelial rete pegs
more abundantly present in the superior and inferior part
of the limbus [3, 4]. The term “palisades of Vogt” was
coined approximately two centuries ago while observing
these radial linear structures under the slitlamp. Such
a location provides LESCs with protection by the lids and
blood supply from near vessels [5]. Differences in the

composition of the limbal basement membrane in
comparison to the rest of the cornea are considered to play
a mechanical protective role for resident stem cells [6, 7].
Furthermore, melanin pigmentation safeguard LESCs from
potential damage by UV light [8, 9]. The limbal zone as
opposed to the central cornea has distinguishing featrures,
such as the thicker epithelium which forms pegs consisted
of 10-12 layers and absence of the Bowman’s layer and the
Descemet’s membrane [10]. Recently, novel components
of the stem cell niche were proposed: limbal epithelial crypt
(LEC) [11], limbal crypts (LCs) and focal stromal
projections (FSPs) [12]. In support of this findings is
observation that LCs and FSPs don’t occur in patients with
limbal stem cells deficiency (LSCD) and cells within them
express high levels of the putative limbal stem cell markers
p63α and ABCG2. These structures are predominantly
distributed in the superior and inferior corneal limbal
quadrants and extend to a varying degree temporally and
nasally with no presence in the horizontal meridian. An
advance in technology of the observation and identification
in vivo stem cells niches is essential in terms of
improvement in stem cells harvesting by the targeted
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biopsy. Understanding the molecular mechanisms
controlling the stem cell microenvironment remains a major
challenge in the area of stem cells research [13, 14]. So far,
the role of basement membrane heterogeneity and cytokines
in limbal stem cells differentiation is still elusive.

Limbal stem cell concept
Davanger and Evensen were the first to proposed that the

corneal epithelium was renewed from a source of cells located
at the limbus [1]. They observed that pigment in the epithelium
in heavily pigmented eyes migrated in lines from the limbal
region to the central cornea while healing. In contrast to these
studies are recent findings that in the mouse the central corneal
epithelium contains oligopotent stem cells [15]. The limbal
stem cell concept is strongly supported by the observation that
slow cycling cells which can be identified experimentally as
“label-retaining cells” (LRC) are restricted to the limbal basal
layer [16]. Further evidence in support of the limbal-stem cell
hypothesis is provided by experiments showing that LESC
have a greater both in vitro [17] and in vivo [18] proliferative
potential than corneal epithelial cells. Additional evidence
comes from the pioneering studies by Tseng et al. showing
that LESCs transplantation can result in persistent restoration
of the entire corneal epithelium [19]. In addition, all corneal
epithelial neoplasias are associated with the limbus [20, 21].
The putative LESCs have a high nucleus/cytoplasm ratio,
heterochromatinrich nuclei with no well-defined nucleoli [2,
5, 22] and smaller size as opposed to basal epithelial cells of
the central and peripheral cornea [23]. The limbus is a unique
model for the study of adult stem cells due to its accessibility
and the fact that limbal stem cells are well physically separated
from transient amplifying cells (TA) [24].

Corneal epithelial cells turnover
Astonishingly, the cornea is an exception among

stratified epithelia because it has evolved differently [25].
It doesn’t contain stem cells but relies on migration of
transit amplifying (TA) cells which are generated by
occasional asymmetrical division of LESCs giving rise to
stem cells and daughter TA cells [26]. A population of
LESCs is responsible for replacing terminally differentiated
cells by providing a constant supply of cells that replace
those removed from the cornea. Lehrer et al. demonstrated
that there are three strategies to expand the corneal
epithelium cell population upon wounding: the recruitment
of stem cells to produce more TA cells, the increase in the
number of times the TA cell can replicate, and the
shortening of the cell cycle time [27]. Unlike the epithelium,
cell turnover of the stroma is very slow and the endothelial
layer is thought to lack the capacity to regenerate. However,
in 2005 this notion has been challenged by Whikehart et al.
who demonstrated mitotic activity by peripheral corneal
endothelial cells [28]. 

Limbal stem cell deficiency (LSCD)
Limbal stem cell deficiency (LSCD) can occur in

a variety of hereditary or acquired disorders including
chemical or thermal injury, ultraviolet and ionizing
radiation, Stevens Johnson syndrome, advanced ocular
cicatricial pemphigoid, contact lens-induced keratopathy,
multiple surgeries or cryotherapies to the limbal region,
aniridia or extensive microbial infection [26, 29]. LSCD
can be classified as partial with deficiency of LESCs limited
to a certain region of the limbus and as total with
conjuctivalization of the entire cornea. Clinically, this leads
to epithelial haze, superficial subepithelial vascularization,
persistent or recurrent epithelial defects, epithelial and
stromal inflammation, late fluorescein staining and loss of
the limbal palisades of Vogt [5, 29]. Patients suffer from
photophobia, discomfort, reduced visual acuity and even
blindness [26]. The key element to the diagnosis of LSCD
is conjunctivalization – process of conjunctival epithelial
cells and blood vessels migration onto the corneal surface
[30]. Impression cytology may be performed to identify
conjunctival goblet cells using periodic acid Schiff stain or
to confirm a conjunctival phenotype using monoclonal
antibodies to cytokeratin 3 and cytokeratin 19 [31].

Transplantation of ex vivo cultured LESC
Traditional techniques used to transplant LSCs include

keratolimbal lamellar allograft (KLAL), conjunctival-limbal
autografts (CLAU), living-related conjunctival-limbal
allografts (lr-CLAL) or oversized and eccentric penetrating
keratoplasties [31]. In humans Pellegrini et al. were the first
to describe the use of ex vivo cultured LESCs for therapeutic
applications [32], hence ophthalmology was placed at the
forefront of stem cell research. This technique is based on
a minimal limbal biopsy performed in contralateral healthy
eyes (in case of partial LSCD) and living related donors or
fresh cadaveric corneas (in case of total LSCD). The next
step is an isolation and ex vivo culture of LESCs to produce
a sheet of stem cells for transplantation. Theoretical
advantages over traditional transplantations include
minimizing the risk of stem cell failure in the donor eye and
allograft rejection by the absence of antigen-presenting
Langerhan’s cells in the graft. There are two main methods
of producing ex vivo cultured LESCs for transplantation, the
explant culture system and the suspension culture system
with some modifications of both techniques described [31,
33]. In most current approaches, the amniotic membrane,
paraffin gauze, collagen shields, fibrin gels, temperature
sensitive biopolymers and even the human anterior lens
capsule are used as a substrate for LESC growth [34, 35].
The major disadvantage of current culture methods is the
use of animal derived products in the culture media.
A replacement of the fetal calf serum (FCS) with the
autologous serum from the patient represents the reduced
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but still remaining risk of possible infection [31, 36].
However, recently Di Girolamo et al. managed to overcome
this problem in 3 patients with LSCD by the use of a contact
lens-based technique for expansion and transplantation of
autologous epithelial progenitors [37]. A study by Daya 
et al. based on polymerase chain reaction (PCR) genotyping
of cells populating the ocular surface postoperatively
indicates that stem cells can persist up to 9 months post-
transplantation and therefore their role is probably limited
to creating the niche for host stem cells [38]. 

Putative LESC markers
To date, several putative stem cell markers have been

proposed, however no single molecular one has been
identified. Therefore a combination of these markers with
the non-expressed ones is used to identify LESCs [39].
Positive LESC markers are cytokeratins Ck15, Ck14, Ck19,
NGF receptor TrkA, vimentin, integrins α6, α9, β1 and β4
[10]. Negative markers include involucrin, connexins 43,
50 and cytokeratins Ck3 and Ck12 [10,40]. Currently, the
transcription factor ∆Np63α which is an N-terminally
truncated α isoform of the p63 gene is considered as
a reliable marker of both resting and activated LESCs [5,
10, 40]. The ABCG2 transporter protein is also suggested
to mark stem cells at the limbus [5, 10, 39, 40]. Recently,
C/EBPδ and Bmi-1 are thought to be useful in stem cells
identification [10, 39]. In recent years, the use of the high
throughput nucleic acid profiling and proteomic techniques
allowed to identify several molecules as potential stem cell
markers. These include epiregulin, cytokeratins 14 and 15,
p-cadherin, wnt-4, superoxide dismutase 2 (SOD2) and
heatshock protein 70 (HSP70.1) [10, 41-43]. Interestingly,
a study by Monteiro et al. indicates that human immature
dental pulp stem cells express markers in common with
LSCs and might be successfully used as a potential
alternative source of cells for corneal epithelium
reconstruction in rabbits [44]. 

Future prospects
Regenerative medicine is a promising filed of research

initiated by ground-breaking work by Howard Green and
his colleagues in 1984 [45]. However, a greater
understanding of stem cells biology is required to achieve
the widespread use of limbal stem cells for therapeutic
purposes. The key limitation in LESC research remains the
identification of definitive stem cells markers. An advance
in imaging techniques opens prospects for a higher success
rate of the identification, isolation and ex vivo expansion
of limbal stem cells. Finding an alternative source of stem
cells which can be successfully used in the clinic is one of
challenges in cornea regeneration. However, a rapid
progress in stem cells research offers hope of restoring
vision for patients suffering from LSCD. 
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