eISSN: 1644-4124
ISSN: 1426-3912
Central European Journal of Immunology
Current issue Archive Manuscripts accepted About the journal Special Issues Editorial board Abstracting and indexing Subscription Contact Instructions for authors Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Experimental immunology

CSF3R as a potential prognostic biomarker and immunotherapy target in glioma

Minglei Huang
1
,
Longze Zhang
1
,
Yan Wu
1
,
Xue Zhou
1
,
Yanyang Wang
1
,
Jidong Zhang
1
,
Ye Liu
1
,
Zhixu He
1
,
Xianyao Wang
1

  1. Zunyi Medical University, China
Cent Eur J Immunol 2024; 49 (2)
Online publish date: 2024/06/21
Get citation
 
PlumX metrics:
 
1. Li T, Li J, Chen Z, et al. (2022): Glioma diagnosis and therapy: Current challenges and nanomaterial-based solutions. J Control Release 352: 338-370.
2. Lv K, Cao X, Wang R, et al. (2022): Neuroplasticity of glioma patients: Brain structure and topological network. Front Neurol 13: 871613.
3. Jiang T, Nam DH, Ram Z, et al. (2021): Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett 499: 60-72.
4. Zhu H, Hu X, Feng S, et al. (2022): Predictive value of PIMREG in the prognosis and response to immune checkpoint blockade of glioma patients. Front Immunol 13: 946692.
5. Cordier D, Krolicki L, Morgenstern A, et al. (2016): Targeted radiolabeled compounds in glioma therapy. Semin Nucl Med 46: 243-249.
6. Park J, Hsueh PC, Li Z, et al. (2023): Microenvironment-driven metabolic adaptations guiding CD8(+) T cell anti-tumor immunity. Immunity 56: 32-42.
7. Locy H, de Mey S, de Mey W, et al. (2018): Immunomodulation of the tumor microenvironment: Turn foe into friend. Front Immunol 9: 2909.
8. Marabelle A, Kohrt H, Caux C, et al. (2014): Intratumoral immunization: a new paradigm for cancer therapy. Clin Cancer Res 20: 1747-1756.
9. Stanley ER, Chitu V (2014): CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol 6: a021857.
10. Chitu V, Biundo F, Stanley ER (2021): Colony stimulating factors in the nervous system. Semin Immunol 54: 101511.
11. Singhal A, Subramanian M (2019): Colony stimulating factors (CSFs): Complex roles in atherosclerosis. Cytokine 122: 154190.
12. He K, Liu X, Hoffman RD, et al. (2022): G-CSF/GM-CSF-induced hematopoietic dysregulation in the progression of solid tumors. FEBS Open Bio 12: 1268-1285.
13. Aliper AM, Frieden-Korovkina VP, Buzdin A, et al. (2014): A role for G-CSF and GM-CSF in nonmyeloid cancers. Cancer Med 3: 737-746.
14. Zhu Y, Knolhoff BL, Meyer MA, et al. (2014): CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 74: 5057-5069.
15. Karagiannidis I, Salataj E, Said Abu Egal E, et al. (2021): G-CSF in tumors: Aggressiveness, tumor microenvironment and immune cell regulation. Cytokine 142: 155479.
16. Miyoshi J, Zhu Z, Luo A, et al. (2022): A microRNA-based liquid biopsy signature for the early detection of esophageal squamous cell carcinoma: a retrospective, prospective and multicenter study. Mol Cancer 21: 44.
17. Dwivedi P, Greis KD (2017): Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies. Exp Hematol 46: 9-20.
18. Dong F, Brynes RK, Tidow N, et al. (1995): Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med 333: 487-493.
19. Germeshausen M, Ballmaier M, Welte K (2007): Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: Results of a long-term survey. Blood 109: 93-99.
20. Fleischman AG, Maxson JE, Luty SB, et al. (2013): The CSF3R T618I mutation causes a lethal neutrophilic neoplasia in mice that is responsive to therapeutic JAK inhibition. Blood 122: 3628-3631.
21. Pardanani A, Lasho TL, Laborde RR, et al. (2013): CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia. Leukemia 27: 1870-1873.
22. Karagiannidis I, de Santana Van Vilet E, Said Abu Egal E, et al. (2020): G-CSF and G-CSFR induce a pro-tumorigenic macrophage phenotype to promote colon and pancreas tumor growth. Cancers (Basel) 12: 2868.
23. Karagiannidis I, Jerman SJ, Jacenik D, et al. (2020): G-CSF and G-CSFR modulate CD4 and CD8 T cell responses to promote colon tumor growth and are potential therapeutic targets. Front Immunol 11: 1885.
24. Ceccarelli M, Barthel FP, Malta TM, et al. (2016): Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164: 550-563.
25. He Y, Jiang Z, Chen C, et al. (2018): Classification of triple-negative breast cancers based on Immunogenomic profiling. J Exp Clin Cancer Res 37: 327.
26. Yoshihara K, Shahmoradgoli M, Martinez E, et al. (2013): Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4: 2612.
27. Newman AM, Liu CL, Green MR, et al. (2015): Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12: 453-457.
28. Charoentong P, Finotello F, Angelova M, et al. (2017): Pan-cancer immunogenomic analyses reveal genotype- immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18: 248-262.
29. Auslander N, Zhang G, Lee JS, et al. (2018): Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med 24: 1545-1549.
30. Sun D, Wang J, Han Y, et al. (2021): TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res 49: D1420-D1430.
31. Jiang Y, Ji Q, Long X, et al. (2022): CLCF1 is a novel potential immune-related target with predictive value for prognosis and immunotherapy response in glioma. Front Immunol 13: 810832.
32. Jiang P, Gu S, Pan D, et al. (2018): Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24: 1550-1558.
33. Cahill D, Turcan S (2018): Origin of gliomas. Semin Neurol 38: 5-10.
34. Reni M, Mazza E, Zanon S, et al. (2017): Central nervous system gliomas. Crit Rev Oncol Hematol 113: 213-234.
35. Davis ME (2018): Epidemiology and overview of gliomas. Semin Oncol Nurs 34: 420-429.
36. Filbin MG, Suva ML (2016): Gliomas genomics and epigenomics: Arriving at the start and knowing it for the first time. Annu Rev Pathol 11: 497-521.
37. Masliantsev K, Karayan-Tapon L, Guichet PO (2021): Hippo signaling pathway in gliomas. Cells 10: 184.
38. Ferris SP, Hofmann JW, Solomon DA, et al. (2017): Characterization of gliomas: from morphology to molecules. Virchows Arch 471: 257-269.
39. Wang J, Xiao Z, Li P, et al. (2023): PRMT6-CDC20 facilitates glioblastoma progression via the degradation of CDKN1B. Oncogene 42: 1088-1100.
40. Fang R, Chen X, Zhang S, et al. (2021): EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun 12: 177.
41. Jakubzick CV, Randolph GJ, Henson PM (2017): Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol 17: 349-362.
42. Hettinger J, Richards DM, Hansson J, et al. (2013): Origin of monocytes and macrophages in a committed progenitor. Nat Immunol 14: 821-830.
43. Haringman JJ, Gerlag DM, Zwinderman AH, et al. (2005): Synovial tissue macrophages: a sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Ann Rheum Dis 64: 834-838.
44. Coillard A, Segura E (2019): In vivo differentiation of human monocytes. Front Immunol 10: 1907.
45. Sheu KM, Hoffmann A (2022): Functional hallmarks of healthy macrophage responses: Their regulatory basis and disease relevance. Ann Rev Immunol 40: 295-321.
46. Anderson NR, Minutolo NG, Gill S, et al. (2021): Macrophage-based approaches for cancer immunotherapy. Cancer Res 81: 1201-1208.
47. Cassetta L, Pollard JW (2018): Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 17: 887-904.
48. Xu Y, Wang X, Liu L, et al. (2022): Role of macrophages in tumor progression and therapy (Review). Int J Oncol 60: 57.
49. Zheng Y, Graeber MB (2022): Microglia and brain macrophages as drivers of glioma progression. Int J Mol Sci 23: 15612.
50. Wei J, Chen P, Gupta P, et al. (2020): Immune biology of glioma-associated macrophages and microglia: functional and therapeutic implications. Neuro Oncol 22: 180-194.
51. Khan F, Lin Y, Ali H, et al. (2024): Lactate dehydrogenase A regulates tumor-macrophage symbiosis to promote glioblastoma progression. Nat Commun 15: 1987.
52. Ni X, Wu W, Sun X, et al. (2022): Interrogating glioma-M2 macrophage interactions identifies Gal-9/Tim-3 as a viable target against PTEN-null glioblastoma. Sci Adv 8: eabl5165.
53. Chen DS, Mellman I (2017): Elements of cancer immunity and the cancer-immune set point. Nature 541: 321-330.
54. He W, Zhang H, Han F, et al. (2017): CD155T/TIGIT signaling regulates CD8+ T-cell metabolism and promotes tumor progression in human gastric cancer. Cancer Res 77: 6375-6388.
55. Kim W, Chu TH, Nienhuser H, et al. (2021): PD-1 signaling promotes tumor-infiltrating myeloid-derived suppressor cells and gastric tumorigenesis in mice. Gastroenterology 160: 781-796.
56. Liu JN, Kong XS, Huang T, et al. (2020): Clinical implications of aberrant PD-1 and CTLA4 expression for cancer immunity and prognosis: A pan-cancer study. Front Immunol 11: 2048.
57. Ausejo-Mauleon I, Labiano S, de la Nava D, et al. (2023): TIM-3 blockade in diffuse intrinsic pontine glioma models promotes tumor regression and antitumor immune memory. Cancer Cell 41: 1911-1926.e8.
58. Arrieta VA, Dmello C, McGrail DJ, et al. (2023): Immune checkpoint blockade in glioblastoma: from tumor heterogeneity to personalized treatment. J Clin Invest 133: e163447.
59. Hung AL, Maxwell R, Theodros D, et al. (2018): TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology 7: e1466769.
60. Zhu Z, Zhang H, Chen B, et al. (2020): PD-L1-mediated immunosuppression in glioblastoma is associated with the infiltration and M2-polarization of tumor-associated macrophages. Front Immunol 11: 588552.
61. Rao G, Latha K, Ott M, et al. (2020): Anti-PD-1 induces M1 polarization in the glioma microenvironment and exerts therapeutic efficacy in the absence of CD8 cytotoxic T cells. Clin Cancer Res 26: 4699-4712.
Copyright: © 2024 Polish Society of Experimental and Clinical Immunology This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.